A Property of A092506

Claim: For a prime p define \mathbb{G}_p to be the set of positive integers congruent to a primitive root (mod p) The set of p satisfying $\forall n \in \mathbb{G}_p \exists$ prime $q \in \mathbb{G}_p$ such that $q \mid n$ is exactly A092506

Proof: Consider a prime p with the given property.

Suppose p-1 is the product of at least two distinct primes. We can write p-1=ab with $\gcd(a,b)=1$ and a,b>1. It is a well known theorem that there exists a primitive root \pmod{p} . Call it g. Then $\operatorname{ord}_p(g^a)=b< ab$ and $\operatorname{ord}_p(g^b)=a< ab$, and $\gcd(a+b,ab)=1 \Longrightarrow \operatorname{ord}_p(g^{a+b})=p-1$. Furthermore, by Dirichlet's Theorem, we can find primes s,t such that $s\equiv a$ and $t\equiv b\pmod{p}$. Then $st\in\mathbb{G}_p$ but st has no prime divisors in \mathbb{G}_p , contradiction.

So p-1 must be a power of a single prime; $p=r^x+1$ for some prime r and $x\in\mathbb{Z}_{\geq 0}$. Unless $x=0\implies p=2$, we have $p=r^x+1>2\implies 2\nmid r^x+1\implies r=2$. So $p=2^x+1$, and since $2\nmid y,\ y\mid x\implies 2^y+1\mid 2^x+1$, we must have $x=2^z$ for some $z\in\mathbb{Z}_{\geq 0}$. So in this case $p=2^{z^z}+1$; overall p is either 2 or a Fermat Prime.

Now we will show that all the aforementioned primes satisfy the condition. The case where p=2 is trivial, so we need only concern ourselves with the latter. Note that for any $0 \not\equiv i, j \pmod{F}$ where F is a Fermat Prime, $\operatorname{ord}_F(ij) \mid \operatorname{lcm}(\operatorname{ord}_F(i), \operatorname{ord}_F(j))$. But also $\operatorname{ord}_F(a) \mid F-1=2^{2^z}$. Hence $\operatorname{ord}_F(i)=2^{e_i}, \operatorname{ord}_F(j)=2^{e_j}$ with $i,j \in \mathbb{Z}_{\geq 0}$ and then $\operatorname{ord}_F(ij) \mid \operatorname{lcm}(\operatorname{ord}_F(i), \operatorname{ord}_F(j)) = \max(\operatorname{ord}_F(i), \operatorname{ord}_F(j))$. The conclusion follows by writing n as a product of its prime divisors (mod F).

So the set of p with this property is $\{2\} \cup A019434 = A092506 \square$