[go: up one dir, main page]

login
A092375
The O(1) loop model on the square lattice is defined as follows: At every vertex the loop turns to the left or to the right with equal probability, unless the vertex has been visited before, in which case the loop leaves the vertex via the unused edge. Every vertex is visited twice. The probability that a face of the lattice on an n X infinity cylinder is surrounded by three loops is conjectured to be given by a(n)/A_{HT}(n)^2, where A_{HT}(n) is the number of n X n half turn symmetric alternating sign matrices.
11
1, 1, 4707, 17576, 112088578, 1441214058, 17605459620761, 743370332504726, 19997068111196867031, 2689483333931146069897, 171415422163184300298223345, 71911782152540818802247981150
OFFSET
6,3
LINKS
Saibal Mitra and Bernard Nienhuis, Osculating Random Walks on Cylinders, in Discrete Random Walks, DRW'03, Cyril Banderier and Christian Krattenthaler (eds.), Discrete Mathematics and Theoretical Computer Science Proceedings AC, pp. 259-264.
FORMULA
Even n: Q(n, m) = Sum_{r=0..(n-2*m)/4} (-1)^r * ((m+2*r)/(m+r)) * binomial(m+r, r) * C_{n/2 - m - 2*r}(n).
Odd n: Q(n, m) = Sum_{r=0..(n-2*m-1)/4)} (-1)^r * binomial(m+r,r) * ( C_{(n-1)/2 - m - 2*r}(n) - C_{(n-1)/2 - m - 2*r - 1}(n) ), where the c_{k}(n) are the absolute values of the coefficients of the characteristic polynomial of the n X n Pascal matrix P_{i, j} = binomial(i+j-2, i-1). The sequence is given by Q(n, 3).
MATHEMATICA
M[n_, k_]:= Table[Binomial[i+j-2, i-1], {i, n}, {j, k}];
c[k_, n_]:= Coefficient[CharacteristicPolynomial[M[n, n], x], x, k]//Abs;
Q[n_?EvenQ, m_]:= Sum[(-1)^r*((m+2*r)/(m+r))*Binomial[m +r, r]*c[n/2 -m-2*r, n], {r, 0, (n-2*m)/4}];
Q[n_?OddQ, m_]:= Sum[(-1)^r*Binomial[m+r, r]*(c[(n-1)/2 -m-2*r, n] - c[(n-1)/2 -m-2*r-1, n]), {r, 0, (n-2*m-1)/4}];
Table[Q[n, 3], {n, 6, 20}] (* G. C. Greubel, Nov 15 2019 *)
KEYWORD
nonn
AUTHOR
Saibal Mitra (smitra(AT)zonnet.nl), Mar 20 2004
STATUS
approved