A181605 is a subsequence of A092340

Robert Israel

April 13, 2021

After verifying that 7 is in A092340, it suffices to prove that if p is a prime $\equiv 7 \mod 10$ and $q = p + 2$ is a prime, then p and q both divide $F_{p^2} + F_{2p}$, where F_n are the Fibonacci numbers.

Since p is not a quadratic residue mod 5 while q is, by quadratic reciprocity 5 is not a quadratic residue mod p but is a quadratic residue mod q . We will use the Binet formula

$$
F_n = \frac{\phi_+^n - \phi_-^n}{\sqrt{5}}
$$

where $\phi_{\pm} = (1 \pm$ √ $\overline{5})/2$ are roots of the polynomial $x^2 - x - 1$. This will work in $GF(q)$, the integers mod q, where ϕ_+ and ϕ_- are roots of $x^2 - x - 1$ in that field, and showing that $F_{p^2} + F_{2p} = 0$ in that field will show that the integer $F_{p^2} + F_{2p}$ is divisible by q. On the other hand, for p we will go to the quadratic extension $GF(p^2)$ where 5 has a square root and ϕ_{\pm} are roots of $x^2 - x - 1$. Showing that $F_{p^2} + F_{2q} = 0$ in $GF(p^2)$ will show that the integer $F_{p^2} + F_{2p}$ is divisible by p.

In $GF(p^2)$, since this has characteristic p,

$$
\phi^p_+ + \phi^p_- = (\phi_+ + \phi_-)^p = 1^p = 1
$$
 and $\phi^p_+ \phi^p_- = (-1)^p = -1$

so ϕ^p_+ and ϕ^p_- are also roots of $x^2 - x - 1$. But there are only two of those roots, namely ϕ_+ and ϕ_- . Now ϕ_+^p can't be ϕ_+ (because only the p elements of $GF(p)$ are roots of the polynomial $X^p - X$), so it must be $\phi_-,$ and ϕ_-^p must be ϕ_+ . Moreover $\phi_+^{p^2} = \phi_-^p = \phi_+$ and similarly $\phi_-^{p^2} = \phi_-$. So

$$
F_{p^2} + F_{2p} = \frac{\phi_+^{p^2} - \phi_-^{p^2}}{\sqrt{5}} + \frac{\phi_+^{2p} - \phi_-^{2p}}{\sqrt{5}} = \frac{\phi_+ - \phi_-}{\sqrt{5}} + \frac{\phi_-^2 - \phi_+^2}{\sqrt{5}} = F_1 - F_2 = 0
$$

In $GF(q)$, $\phi_{+}^{q} = \phi_{+}$ and $\phi_{-}^{q} = \phi_{-}$, $\phi_{+}^{p} = \phi_{+}^{q-2} = \phi_{+}^{-1} = -\phi_{-}$ and similarly $\phi_{-}^{p} = -\phi_{+}$. Moreover $\phi_+^{p^2} = (-\phi_-)^p = -\phi_+$ and similarly $\phi_-^{p^2} = -\phi_1$. So

$$
F_{p^2} + F_{2p} = \frac{\phi_+^{p^2} - \phi_-^{p^2}}{\sqrt{5}} + \frac{\phi_+^{2p} - \phi_-^{2p}}{\sqrt{5}} = \frac{-\phi_+ + \phi_-}{\sqrt{5}} + \frac{\phi_+^2 - \phi_-^2}{\sqrt{5}} = -F_1 + F_2 = 0
$$