[go: up one dir, main page]

login
A091565
Expansion of (1 - x - sqrt(1 - 2*x + x^2 - 8*x^3)) / (4*x^2) in powers of x.
0
0, 1, 1, 1, 3, 7, 13, 29, 71, 163, 377, 913, 2219, 5375, 13189, 32677, 81167, 202523, 508273, 1280537, 3236275, 8207543, 20880893, 53263405, 136205527, 349137811, 896881641, 2308523809, 5953138875, 15378562415, 39791453685, 103115768885
OFFSET
0,5
COMMENTS
Series reversion of g.f. A(x) is -A(-x).
FORMULA
G.f.: (1 - x - sqrt(1 - 2*x + x^2 - 8*x^3)) / (4*x^2) = 2*x / (1 - x + sqrt(1 - 2*x + x^2 - 8*x^3)) .
G.f. A(x) = y satisfies 2*(x*y)^2 + (x - 1)*y + x = 0.
a(n) = a(n-1) + 2*(a(1)*a(n-3) + a(2)*a(n-4) + ... + a(n-3)*a(1)) for n>1.
D-finite with recurrence: +(n+2)*a(n) +(-2*n-1)*a(n-1) +(n-1)*a(n-2) +4*(-2*n+5)*a(n-3)=0. - R. J. Mathar, Jan 25 2020
EXAMPLE
G.f. = x + x^2 + x^3 + 3*x^4 + 7*x^5 + 13*x^6 + 29*x^7 + 71*x^8 + 163*x^9 + ...
PROG
(PARI) {a(n) = if( n<0, 0, polcoeff( 2 * x / (1 - x + sqrt(1 - 2*x + x^2 - 8*x^3 + x * O(x^n))), n))};
CROSSREFS
Cf. A025249.
Sequence in context: A283323 A260022 A134270 * A025249 A147098 A109291
KEYWORD
nonn
AUTHOR
Michael Somos, Jan 21 2004
STATUS
approved