OFFSET
0,5
COMMENTS
Series reversion of g.f. A(x) is -A(-x).
LINKS
Paul Barry, Riordan Pseudo-Involutions, Continued Fractions and Somos 4 Sequences, arXiv:1807.05794 [math.CO], 2018.
FORMULA
G.f.: (1 - x - sqrt(1 - 2*x + x^2 - 8*x^3)) / (4*x^2) = 2*x / (1 - x + sqrt(1 - 2*x + x^2 - 8*x^3)) .
G.f. A(x) = y satisfies 2*(x*y)^2 + (x - 1)*y + x = 0.
a(n) = a(n-1) + 2*(a(1)*a(n-3) + a(2)*a(n-4) + ... + a(n-3)*a(1)) for n>1.
D-finite with recurrence: +(n+2)*a(n) +(-2*n-1)*a(n-1) +(n-1)*a(n-2) +4*(-2*n+5)*a(n-3)=0. - R. J. Mathar, Jan 25 2020
EXAMPLE
G.f. = x + x^2 + x^3 + 3*x^4 + 7*x^5 + 13*x^6 + 29*x^7 + 71*x^8 + 163*x^9 + ...
PROG
(PARI) {a(n) = if( n<0, 0, polcoeff( 2 * x / (1 - x + sqrt(1 - 2*x + x^2 - 8*x^3 + x * O(x^n))), n))};
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Jan 21 2004
STATUS
approved