[go: up one dir, main page]

login
A091555
Partial sums of Mertens's function (A002321).
2
1, 1, 0, -1, -3, -4, -6, -8, -10, -11, -13, -15, -18, -20, -21, -22, -24, -26, -29, -32, -34, -35, -37, -39, -41, -42, -43, -44, -46, -49, -53, -57, -60, -62, -63, -64, -66, -67, -67, -67, -68, -70, -73, -76, -79, -81, -84, -87, -90, -93, -95, -97, -100, -103, -105, -107
OFFSET
1,5
LINKS
FORMULA
a(n) = Sum_{k=1..n} mu(k)*(n-k+1) where mu=A008683, the Moebius function. - Reinhard Zumkeller, Nov 06 2006
G.f.: (1/(1 - x)^2)*Sum_{k>=1} mu(k)*x^k. - Ilya Gutkovskiy, Mar 11 2018
MATHEMATICA
Table[Sum[MoebiusMu[k] (n - k + 1), {k, 1, n}], {n , 1, 56}] (* Indranil Ghosh, Mar 16 2017 *)
PROG
(PARI) for(n=1, 56, print1(sum(k=1, n, moebius(k) * (n - k + 1)), ", ")) \\ Indranil Ghosh, Mar 16 2017
CROSSREFS
Sequence in context: A246705 A300997 A024672 * A184398 A024665 A027669
KEYWORD
sign
AUTHOR
Jon Perry, Mar 04 2004
EXTENSIONS
More terms from Reinhard Zumkeller, Nov 06 2006
STATUS
approved