[go: up one dir, main page]

login
A091513
Numbers k such that (2^k + 1)^2 - 2 = 4^k + 2^(k+1) - 1 is prime.
10
0, 1, 2, 3, 5, 8, 9, 12, 15, 17, 18, 21, 23, 27, 32, 51, 65, 87, 180, 242, 467, 491, 501, 507, 555, 591, 680, 800, 1070, 1650, 2813, 3281, 4217, 5153, 6287, 6365, 10088, 10367, 37035, 45873, 69312, 102435, 106380, 108888, 110615, 281621, 369581, 376050, 442052, 621443, 661478
OFFSET
1,3
LINKS
Eric Weisstein's World of Mathematics, Integer Sequence Primes
Eric Weisstein's World of Mathematics, Near-Square Prime
FORMULA
A093069(n) = (2^a(n) + 1)^2 - 2.
MATHEMATICA
Flatten[Position[Table[(2^n + 1)^2 - 2, {n, 0, 10^3}], _?PrimeQ] - 1] (* Eric W. Weisstein, Feb 10 2016 *)
Select[Range[0, 5000], PrimeQ[(2^# + 1)^2 - 2] & ] (* Vincenzo Librandi, Feb 19 2016 *)
PROG
(Magma) [n: n in [0..500] | IsPrime((2^n+1)^2-2)]; // Vincenzo Librandi, Feb 19 2016
(PARI) is(n)=ispseudoprime((2^n+1)^2-2) \\ Charles R Greathouse IV, Feb 19 2016
CROSSREFS
Cf. A091514 (primes of the form (2^n + 1)^2 - 2).
Cf. A093069 (numbers of the form (2^n + 1)^2 - 2).
Sequence in context: A286492 A025033 A122933 * A060138 A139487 A162586
KEYWORD
nonn,hard
AUTHOR
Eric W. Weisstein, Jan 17 2004
EXTENSIONS
a(41) from Eric W. Weisstein, Feb 27 2004
a(42) to a(44) from Eric W. Weisstein, Jun 05 2004
Edited by Ray Chandler, Nov 15 2004
a(46) from Cletus Emmanuel (cemmanu(AT)yahoo.com), Oct 07 2005
a(47)-a(48) from Eric W. Weisstein, Feb 10 2016 (computed by Mark Rodenkirch)
a(49)-a(50) from Eric W. Weisstein, Jun 08 2016 (computed by Mark Rodenkirch)
a(51) from Eric W. Weisstein, Jun 19 2016 (computed by Mark Rodenkirch)
STATUS
approved