[go: up one dir, main page]

login
A091230
Iterates of A014580, starting with a(0) = 1, a(n) = A014580^(n)(1). [Here A014580^(n) means the n-th fold application of A014580].
6
1, 2, 3, 7, 25, 137, 1123, 13103, 204045, 4050293, 99440273
OFFSET
0,2
FORMULA
a(0)=1, a(n) = A014580(a(n-1)). [The defining recurrence].
From Antti Karttunen, Aug 03 2014: (Start)
Other identities. For all n >= 0, the following holds:
A091238(a(n)) = n+1.
a(n) = A091204(A007097(n)) and A091205(a(n)) = A007097(n).
a(n) = A245703(A007097(n)) and A245704(a(n)) = A007097(n).
a(n) = A245702(A000079(n)) and A245701(a(n)) = A000079(n).
(End)
PROG
(PARI)
isA014580(n)=polisirreducible(Pol(binary(n))*Mod(1, 2)); \\ This function from Charles R Greathouse IV
prev=1; i=0; print1(1, ", "); for(n=1, 123456789, if(isA014580(n), i++; if((i == prev), print1(n, ", "); prev=n))) \\ Antti Karttunen, Aug 02 2014
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jan 03 2004
EXTENSIONS
Terms a(8)-a(10) computed by Antti Karttunen, Aug 02 2014
STATUS
approved