[go: up one dir, main page]

login
A090119
a(n)=nextprime[A090116(n)], the smallest prime following squares listed in A090116 and also the distance of a(n) from the preceding prime is 2n.
4
5, 11, 29, 367, 149, 631, 127, 1949, 541, 907, 3251, 1693, 2503, 10427, 5779, 10831, 10007, 22229, 30631, 25301, 121123, 76207, 93047, 157627, 212557, 35729, 119027, 1121509, 190979, 672439, 693943, 1004027, 259099, 1646101, 675713, 1207841
OFFSET
1,1
FORMULA
a(n) = nextprime[A090116(n)^2] = nextprime[A090117(n)] = p[1+pi[A090117(n)]] = A007918[A090116[n]].
EXAMPLE
n=7: a(7)=127 because 127-113=14=2.7 and 121=11 is between {127,113} closest primes to 121 a suitable square number. Also 127 is the smallest prime with this property.
MATHEMATICA
pre[x_ := Prime[PrimePi[x]] nex[x_ := Prime[PrimePi[x]+1] de[x_ := Prime[PrimePi[x]+1]-Prime[PrimePi[x]] t=Table[de[w^2], {w, 1, 50000}]; mt=Table[Min[Flatten[Position[t, 2*j]]], {j, 1, 100}] Table[nex[Part[mt, j]^2], {j, 1, Length[mt]}]
KEYWORD
nonn
AUTHOR
Labos Elemer, Jan 09 2004
STATUS
approved