[go: up one dir, main page]

login
A090044
Triangle read by rows: T(n,k) = A083093 with 1's and 2's interchanged.
1
2, 2, 2, 2, 1, 2, 2, 0, 0, 2, 2, 2, 0, 2, 2, 2, 1, 2, 2, 1, 2, 2, 0, 0, 1, 0, 0, 2, 2, 2, 0, 1, 1, 0, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 1, 2, 0, 0, 0, 0, 0, 0, 2, 1, 2, 2, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 2, 2, 2, 0, 2, 2, 0, 0, 0, 0, 2, 2, 0, 2, 2
OFFSET
0,1
LINKS
Y. Moshe, The density of 0's in recurrence double sequences, J. Number Theory, 103 (2003), 109-121; see Fig. 1.
Y. Moshe, The distribution of elements in automatic double sequences, Discr. Math., 297 (2005), 91-103.
FORMULA
The negative of Pascal's triangle read mod 3.
EXAMPLE
2; 2,2; 2,1,2; 2,0,0,2; ...
MATHEMATICA
-Mod[ Flatten[ Table[ Binomial[n, k], {n, 0, 13}, {k, 0, n}]], -3] (* Robert G. Wilson v, Jan 19 2004 *)
CROSSREFS
Sequence in context: A175357 A232800 A248380 * A036238 A318723 A225180
KEYWORD
nonn,tabl,easy
AUTHOR
N. J. A. Sloane, Jan 19 2004
EXTENSIONS
Extended by Robert G. Wilson v, Jan 19 2004
STATUS
approved