OFFSET
0,3
COMMENTS
Form a square array where the n-th row is the n-th binomial transform of this sequence, starting with this sequence in the zeroth row; then the diagonal of the square array so formed is this sequence shifted 1 place left.
FORMULA
a(n+1) = sum(k=0, n, a(k)*binomial(n, k)*n^(n-k))
EXAMPLE
Note the diagonal in the array of iterated binomial transforms:
[_1,1,2,10,82,946,14246,267974,..]
[1,_2,5,20,139,1482,21389,390832,..]
[1,3,_10,42,258,2438,32854,577362,..]
[1,4,17,_82,499,4264,52361,869270,..]
[1,5,26,146,_946,7770,87350,1346062,..]
[1,6,37,240,1707,_14246,151501,2159484,..]
[1,7,50,370,2914,25582,_267974,3588122,..]
[1,8,65,542,4723,44388,473369,_6117202,..]
PROG
(PARI) {L=20; a=[1]; for(i=1, L, b=a; for(n=0, length(a)-1, b[n+1]=sum(k=0, n, a[k+1]*binomial(n, k)*n^(n-k)); ); a=concat(1, b); ); for(j=1, L, print1(a[j], ", "))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 08 2003
STATUS
approved