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Fibonacci sequences with relative prime initial conditions, and the
binary quadratic form [1, 1, −1]

Wolfdieter L a n g 1

Abstract

This is a comment on Brousseau’s [3] ordering of Fibonacci sequences with relative prime inputs.
It relates to the integer proper solutions of the indefinite binary quadratic form x2 + x y − y2 = N
with integer N . This is the principal reduced form of discriminant 5, a member of a 2−cycle of forms.
The corresponding representative parallel primitive forms lead to the solutions, expressible in terms
of Chebyshev’s polynomials {S(n, 3)}n≥−2.

1 The binary quadratic form [1, 1, −1]

For details on indefinite binary quadratic forms see the Buell [2] and Scholz-Schoeneberg [9] references,
and also the author’s paper [6], given as a link in A225953, where proofs are given for some of the later
given statements. See also the authors paper [7] (with a link in A324251) on Pell cycles and graphs.
Computations have been done with the help of Maple [4].

The primitive binary quadratic form x2 + x y − y2 representing an integer N is abbreviated as [a, b, c] =
[1, 1, − 1], and has discriminant b2 − 4 a c = 5 =A003658(2). The class number h(5) of this from is
1 =A087048(0). This means that there is only one cycle of reduced forms, the one related to the principal
reduced form, viz Fp = [1, 1, − 1] (see [6], Lemma 2). The right-neighbor form F ′ = [−1, 1, 1] is the
other member of this 2−cycle. The proper equivalence transformation from Fp to F ′ is obtained by
the determinant +1 matrix R(t) = Matrix([[0,−1], [1, t]]),with t = −1, and F ′ transforms back to Fp

with R(1). Hence the matrix of the automorphic equivalence transformation for this cycle (automorphic
matrix, for short) is Auto(5) = R(−1)R(1), which is

Auto(5) =

(
1 1
1 2

)
. (1)

The k-th power of this matrix is (via the Cayley-Hamilton theorem)

Auto(5)k =

(
S(k − 1, 3) − S(k − 2, 3) , S(k − 1, 3)

S(k − 1, 3) , S(k, 3) − S(k − 1, 3

)
, for k ∈ Z , (2)

where the Chebyshev polynomial system {S(n, 3)}n∈Z enters, with S(n, 3) =A001906(n + 1), for n =
−1, 0, ... , with S(−2, 3) = −1, and S(−|k|, 3) = −S(|k| − 2, 3), for k ∈ N0.

Auto(5)k, for k ∈ Z \ 0, gives all integer proper solutions (x(N, j; k), y(N, j; k))⊤ (⊤ for transposed,
and proper meaning that gcd(x(N, j; k), y(N, j; k)) = 1) of x2 + x y − y2 = N , originating from each
of the j = 1, ..., #pfsols(N) proper nonnegative fundamental solutions (pfsols) (x(N, j; 0), y(N, j; 0))⊤

by (
x(N, j; k)
y(N, j; k)

)
= Auto(5)k

(
x(N, j; 0)
y(N, j; 0)

)
, for j = 1, 2, ..., #pfsols(N) , k ∈ Z . (3)
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In general there is no formula for giving these pfsols, only prescriptions scanning certain candidates are
known. (e.g., for the general Pell equations there are the inequalities given by Nagell [5], Theorems 108
and 108b).
We prefer to use the method which searches for all so-called representative parallel primitive forms (rpapfs)
for a given discriminant Disc (here Disc = 5) and a representation of N . (This has been explained in
detail, with references, for the general Pell equations in [7]).

A remark on the primitive but not reduced form F̂ = [1, −1, −1] of discriminant 5. It is properly
equivalent to the principal form Fp = [1, 1, −1] by two R−transformations, viz R(1)R(0). This means

(up to an overall sign change) that each relative prime (proper) solution (X, Y ) representing F̂ with
value N is a proper solution (x, y) of Fp representing N with x = X − Y and y = Y . Vice versa,

(X, Y ), with X = x + y and Y = y, solves F̂ = N properly if (x, y) solves Fp = N properly. This fact
will be used later in connection with the approach of Brother Alfred (A. Brousseau) [3]. The exchange
of indeterminates in Fp leads to Fp(y x) = −F̂ (x, y).

The principal form Fp is symmetric under x → −x together with y → −y, hence, by an overall sign
change, we may restrict to solutions of Fp(x, y) = N with x > 0. Whenever a given formula produces
a non-positive solution for x, such an overall sign change is applied but not always mentioned.

Because the change x → −y and y → x produces from a solution with positive N a solution for
−N (possibly with the mentioned overall sign change to obtain again x > 0) we restrict ourselves to
positive N in the following. There is no solution for N = 0, because this change for N = 0 implies
(x, y) = (−y, x), but gcd(0, 0) 6= 1.

It is clear that proper solutions (x, y) can lead only to odd N , because the non-trivial case odd-odd leads
to a result congruent to 1 (mod 2).

Each possible value of N represented properly by Fp is congruent to 0 or −1 or +1 modulo 5, as can
be seen by checking the 15 cases x ≥ y modulo 5. However, not all 0, −1, +1 (mod 5) numbers appear,
e.g.,N = 52 = 25 has no proper solution. There are conjectures on the set N of allowed N values given
in comments on A089270. This paper is intended to prove them.
At this stage we can state the following Lemma which will be needed in the discussion of section 3. Part
iii) appeared as a conjecture for solutions of x2 − x − 1 = 0 (modN), and can be proven similarly (see
section 3).

Lemma 1:

i) Every pair (x, y = 1), with x ∈ N, is a positive fundamental proper solution of Fp = N ≥ 1, where
N = N(x) = x2 + x − 1 = 2T (x) − 1 = A028387(x− 1), with the triangular numbers T =A000217,
is odd, and satisfies N(x) ≡ 0 or 1 or 4 (mod 5).
ii) The sequence {N(x)}x≥ 1 is a proper sub-sequence of A089270 that records N , the set of values of N
for all possible proper solutions of x2 + x y − y2 = N . See also Table 4, and N in Table 8 with k = 1.
iii) The indefinite binary quadratic form x2 + x y − y2 has a proper representation of N ≥ 1 if and only
if N solves the congruence x2 + x − 1 ≡ 0 (modN).

Proof:
i) This special case is obvious. Note that in the case Fp = N = 1 on can replace the positive fundamental
solution (1, 1) by the non-negative one (1, 0), and (1, 1)⊤ = Auto(5) , (1, 0)⊤.
ii) Also obvious.
iii) This follows from the representative parallel primitive forms (rpapfs) for discriminant Disc (here
Disc = 5) and representation N ≥ 1. The class number is 1 =A087048(0), which tells that there is only
one cycle of reduced primitive forms, and all rpapfs reduce to the principal form of this cycle. See [9],
paragraph 27, pp. 104-105 (where only primitive forms are considered). For the procedure for the odd
Disc case see [7], p. 4.

These rpapfs are [N, b(j), c(j)] with j ∈ {0, 1, ..., N − 1 } such that c(j) = j (j+1)− (5−1)/4)
N becomes an

integer number, and b(j) = 2 j + 1. But this means to solve the congruence j2 + j − 1 ≡ 0 (modN) for j.
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The possible values for N will be found in section 3, and the trivial solution (1, 0) of the rpapfs will be im-
portant.

The formula eq. (2) leads to the following result on the k-family of each of the j ∈ {1, 2, ..., #pfsols(N) }
solutions for a given non-negative fundamental proper solution x(N, j; 0) = a > 0 and y(N, j; 0) = b ≥
0 with a − b > 0, implying N > 0.

x(N, j; k) = (a + b)S(k − 1, 3) − aS(k − 2, 3),

y(N, j; k) = b S(k, 3) + (a − b)S(k − 1, 3), for k ∈ Z . (4)

x(N, j; 1) ≥ y(N, j; 1), and equality holds only for N = 1, and x(N, j; k) > y(N, j; k) for k ≥ 2.
For negative k it is clear from the rule for negative indices of the S polynomials that y(N, j;−|k|) < 0
for |k| ∈ N, hence x(N, j;−|k|) > y(N, j;−|k|) trivially, because by an overall sign change always
x(N, j;−|k|) > 0. These statements follow by using the S− recurrence and the positivity S(k, 3) for
k ≥ 0. E.g., for k ≥ 0 one finds x(N, j;−|k|) − y(N, j;−|k|) = −((a − b)S(k− 2, 3) + b S(k− 1, 3)),
which is −b ≤ 0 for k = 1, and equality holds only for N = 1.

In Table 1 the rpapfs are listed for representable N = N(n) =A089270(n) values, for n ≥ 1.
One obtains from each of these #pfsols(N) parallel forms a corresponding pfsol by repeated R(t)
transformations until one reaches the principal form Fp. The corresponding t-tuples are listed as
~t(N, j) = (t1(N, j), ... ttmax(N,j)(N, j)). It is known (see e.g., [9], Satz 79, p. 113) that every primi-
tive (!) form is equivalent to a reduced form (in our case to Fp).

(
x(N, j; 0)
y(N, j; 0)

)
= R−1(ttmax(N,j)(N, j)) · · · R−1(t1(N, j))

(
1
0

)
for j = 1, 2, ..., #pfsols(N) . (5)

is a fundamental solution, but not necessarily a positive one. However application of positive powers of
the Auto(5) matrix will lead to a first positive fundamental form.

Example: N = 11 =A089270(3), with #pfsols(11) = 2 rpapfs Pa1 = [11, 7, 1] and Pa2 = [11, 15, 5]
with ~t(11, 1) = (4), and ~t(11, 2) = (1, −2), with the intermediate form [5, −5, 1]. Thus

(
x(11, 1; 0)
y(11, 1; 0)

)
= R−1(4)

(
1
0

)
=

(
4

−1

)
. (6)

In this case the first positive pfsol for Fp = 11 is

(
x(11, 1; 1)
y(11, 1; 1)

)
= Auto(5)

(
x(11, 1; 0)
y(11, 1; 0)

)
=

(
1 1
1 2

)(
4

−1

)
=

(
3
2

)
. (7)

Similarly, the second parallel form leads first to a solutions with x and y negative, so an overall sign flip
gives the first positive pfsol:

−
(

x(11, 2; 0)
y(11, 2; 0)

)
= −R−1(−2)R−1(1)

(
1
0

)
=

(
3
1

)
. (8)

The first family (also known as class) of solutions is then, with eq. (2),

(
S(k − 1, 3) − S(k − 2, 3) , S(k − 1, 3)

S(k − 1, 3) , S(k, 3) − S(k − 1, 3

)(
3
2

)
, for k ∈ Z . (9)

This leads to x(11, 1; k) =A013655(2 k) = [3, 5, 12, 31, 81, 212, 555, 1453, ...], and y(11, 1; k) =
A013655(2 k + 1) = [2, 7, 19, 50, 131, 343, 898, 2351, ...], for k ∈ N0. For the second family based
on the ppfsol (positive proper fundamental solution) (3, 1)⊤ one finds the bisection of A104449:
x(11, 2; k) =A104449(2 k) and y(11, 2; k) =A104449(2 k + 1) . These are the two Fibonacci sequences
with the relative prime initial conditions (a(0), b(0)) = (3, 2) and (3, 1), respectively.
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From eq. (2) one finds for any given positive proper fundamental solution (a(N, j), b(N, j))⊤ the ordinary
generating functions (o.g.f.s) for the solutions (x(N, j; k), y(N, j; k)) for j ∈ {1, 2, ..., #pfsols } and
k ∈ N0, named (Gx(N, j; t), Gy(N, j; t)), the results

Gx(N, j; t) =
a(N, j) − t (2 a(N, j) − b(N, j))

1 − 3 t + t2
, Gy(N, j; t) =

b(N, j) + t (a(N, j) − b(N, j))

1 − 3 t + t2
. (10)

These o.g.f.s coincide, for each given N and j, with the bisection of Fibonacci sequences {F (a, b;n)}n≥ 0

with inputs F (a, b; 0) = a and F (a, b; 1) = b, and F (a, b;n) = F (a, b;n− 1) + F (a, b;n− 2), for n ≥ 2,
viz

GFeven(a, b; t) :=

∞∑

k=0

F (a, b; 2 k) tk =
a − t (2 a − b)

1 − 3 t + t2
, (11)

GFodd(a, b; t) :=

∞∑

k=0

F (a, b; 2 k + 1) tk =
b + t (a − b)

1 − 3 t + t2
. (12)

2 Ordering of Fibonacci sequences with relative prime initial condi-

tions

Brother Alfred [3] considered Fibonacci sequences with relative prime nonnegative initial conditions (a, b),
with a < b and defined for these sequences a certain order.
We give a slightly different approach here. In effect all pairs of relative prime non-negative integers
(n, k) with n ≥ k ≥ 1 and gcd(n, k) = 1 are first collected in a certain way in an array with row label
n and row length ϕ(n) =A000010(n). The array of positive integers relative prime to n is A038566,
for n >= 1, which we name AGCD with entry AGCD(n, m), m = 1, 2, ..., ϕ(n) . But instead of
A038566(1, 1) = 1 we take AGCD(1, 1) := 0. Then in the array A(n, m), for n ≥ 1, of pairs of
relative prime integers one takes for all n with ϕ(n) = 1 or 2 the pair (n,AGCD(n, m)), for m =
1, 2, ..., ϕ(n) . Hence the first four rows are [(1, 0)], [(2, 1)], [(3, 1), (3, 2)], [(4, 1), (4, 3)], and row n = 6
is [(6, 1), (6, 5)]. For row n with ϕ(n) = 2 l, with l ≥ 2 one considers a reordered row of A038566(n),
namely Sequence(AGCD(n, k), AGCD(n, ϕ(n) − (k−1))) for k = 1, 2, ..., ϕ(n)/2 . Thus the reordered
row n = 5 of AGCD(n,k) becomes 1, 4, 2, 3. This reordered array AGCD is named AGCD′. Finally,
row n of an array AP of pairs is obtained by AP (n, m) = (n,AGCD′(n, m)), for n ≥ 1. This array AP
is shown in Table 2. For the corresponding representable values N for Fp(x = n, y = AGCD′(n, m) see
Table 3.

In Table 2 two neighboring pairs appear within square brackets, for n ≥ 3. The number of these pairs
of pairs is named #N(n). The reason for this grouping of two pairs is that (x1, y1) and (x2, y2) are
positive fundamental solutions leading to the same N = x2 + x y − y2 value. See Table 3. That pairs
collected in a square bracket lead to the same N value is trivial, because (n, k) and (n, n−k) satisfy both
N = n2 + n k − k2, but only pairs with gcd(n, k) = 1 qualify (implying that also gcd(n, n − k) = 1
because gcd(n,−k) = gcd(n, k)).

#N(n) tells how many representable numbers N are obtained from pairs of array AP with first entry
n. (For n = 1 and n = 2 there is no pair, and #N(n) is set to 1). E.g., #N(7) = 3, because
N = 55, 59, 61 have solutions with first entry 7. Of course, some representable N numbers may have
solutions from pairs belonging to different n values; e.g.,N = 209 = 11 ·19 has four proper fundamental
solutions (this N being the first instance with two square bracket pairs), namely from one bracket pair
for n = 13 and one from n = 14: [(13, 5), (13, 8)] and [(14, 1), (14, 13)] (see Table 4).

In Table 4 the square bracket terms from array AP of Table 2 which lead to the same representable value
N are collected. Thus for N = 1 we used the proper fundamental solution (1, 0), not the positive one
(1, 1), obtained by applying Auto(5).
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An ordering of Fibonacci sequences {F (a, b, n}n≥ 0 with relative prime initial conditions F (a, b; 0) = a
and F (a, b; 1) = b, with a > b, is now obtained by using a = x and b = y of the proper fundamental
solutions, ordering with rising N , and within like N the pairs (x, y) are ordered lexicographically. E.g.,
the first sequence is (1, 0), the fourth is (3, 2), and (14, 1) with N = 209 is the 57th sequence (in Brother

Alfred’s counting it corresponds to his (1, 15) appearing at position 55.

This order is similar to the one of Brother Alfred with value D = N , but his pairs (f0, f1) satisfy
D = f2

1 − f1 f0 − f2
0 . Thus, using the remark on the form F̂ = []1, −1, −1] in section 1 above, we

have to take x = f1 − f0 and y = f0, or f0 = y and f1 = x + y. Thus the ordinary Fibonacci

sequence F =A00045, Brother Alfred’s (0, 1) becomes now (1, 0) which is F (1, 0;n) = A00045(n − 1),
for n ≥ 1, and F (1, 0; 0) = 1 = F (−1). Similarly, Brother Alfred’s second sequence (1, 3) is shifted
Lucas A000032(n + 1), for n ≥ 0. This becomes F (2, 1;n) =A000032(n) directly. Also his fourth
sequence (1, 4) is directly A000285, whereas our F (3, 1;n) =A104449(n) =A000285(n− 1) , for n ≥ 0.
Note a typo in [3] for D = 31; the second pair should be (3, 8) (not (2, 8).

In conclusion the two orderings of Fibonacci sequences with relative prime initial conditions differ.
Brother Alfred used rising non-negative pairs of integers whereas we use falling ones. The transla-
tion between these pairs has been given. Because x + y = f1 and y = f0 our sequences start with an
extra x for n = 0 and then coincide with Brother Alfred’s sequence with a shifted index by +1. In the
case of more then two pairs for one value D = N , like for N = 209, the order of the pairs, hence of the
sequences, differs.

3 Diophantine equations x2 + x − 1 ≡ 0 (modN), and x2 − 5 ≡
0 (modN)

In this section it will be seen that the Diophantine equations x2 + x − 1 ≡ 0 (modN), and x2 − 5 ≡
0 (modN), with positive N have only solutions for N = 1, and for N with a prime number factorization
with only odd primes congruent to ±1 (mod 5) and their powers, multiplied by either 1 or 5. The primes
±1 (mod 5) are given on A038872 (without the leading 5). From Lemma 1 part iii) these numbers then
coincide with N = N(n) =A089270(n). This structure of these N has been conjectured by T. D. Noe

as a comment in A089270 from Nov 14 2010. For the congruence x2 − x − 1 ≡ 0 (modN) this has also
been conjectured by T. D. Noe in a Nov 04 2009 comment.

In the following we give a proof for the structure of these N values and the number of representative
solutions, starting by listing 7 ingredients for this proof. An additional point 8) is added to show how
solutions with composite N are computed from the ones for N = 5 and powers of primes congruent to
±1 (mod 5).

1) The solutions of the two quadratic congruences

x2 + x − 1 ≡ 0 (modN), and X2 − X − 1 ≡ 0 (modN), for N ∈ N , (13)

are related by X = x + 1. This is trivial. See also the more general remark on the relation between the
solutions of the forms Fp = [1, 1,−1] = N and F̂ = [1, −1,−1] = N in section 1. Therefore, only the
first case will be considered in the following.

2) The congruence x2 − 5 ≡ 0 (modN) means that 5 is a quadratic residue modulo N , in short 5RN .
The case N = 1 is trivial because every integer number is a solution, and the representative solution (in
the first non-negative residue class) is 0. For x2 + x − 1 ≡ 0 (mod 1) the representative solution is also
0.
The case N = 5 is special because gcd(5, N) = 5 6= 1. There is just one representative solution from
the first non-negative residue class, viz 0. For the other congruence the only representative solution for
N = 5 is 2.
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3) The relation between solutions of x2 + x − 1 ≡ 0 (modN) and those of x̃2 − 5 ≡ 0 (mod 4N), is
given by 2x± + 1 = ± x̃, where x̃ =

√
5 + 4N k, with the least positive integer number k producing a

positive x̃ (later these minimal k values for representable N and the (odd) x̃ are listed in Table 8). This
is then evaluated modulo N . Hence for the solutions x± one needs the solutions x̃ (modN) (it seems that
x̃ < N already).
For N = 1 one finds from the square root formula x̃ = 3 with k = 1, and x+ = 1, x− = −2 , evaluating
modulo 1 to the representatives x̃ = 0 and x+ = x− = 0, which is clear immediately, because every
integer satisfies the congruences modulo 1.
For N = 5 the results are x̃ = 5 for k = 1 and x+ = 2, x− = −3. Evaluated modulo 5 with the
representatives x̃ = 0 and x+ = x− = 2.

For all other solvable positive N 6= 1, 5 the representative solutions come in pairs. See Tables 6 and 7
for these representative solutions for solvable N = N(n) (to be determined later) for n = 1, 2, ..., 60 .
The pairs of solutions are given within brackets. In Table 6 these pairs sum to N − 1, and in Table 7
they add to N . Composite N values are underlined.
It follows from section 1 that the first congruence, as a special case of Fp = N , for N ≥ 1, with y = 1,
can have only solutions with odd N from the sets 0, ±1 modulo 5 (but as will be shown only the proper
subset of solvable N = N(n) values stated in the preamble of this section will survive).

4) For N ≡ 0 (mod 5) the prime number factorization of N has only 5 as a factor; no higher powers of
5 are allowed. For x̃2 − 5 ≡ 0 (modN), with N = 5e5 N̂ , where e5 ∈ N, and 5 does not divide N̂ , it
follows that 5 (1 + 5e5−1mN̂) = x̃2, with an integer number m, but 1 + 5e5−1 mN̂ ≡ 1 (mod 5), for
e5 − 1 ≥ 1. Hence a second factor 5 for x̃2 6= 0 is missing, and only e5 = 1 remains. If x̃2 = 0 then
mN̂ = −1 and e5 = 1 also. For general solvable N the exponent of prime number 5 is then e5 ∈ {0, 1}.
5) Each integer solution of x̃2 − 5 ≡ 0 (modN), for positive odd N > 1, is also a solution of all
congruences x̃2 − 5 ≡ 0 (modpeii ), with the powers of odd primes pi, with ei ∈ N, appearing the prime
number factorization of N (the prime 5 has exponent 0 or 1). Moreover, the number of representative
solutions of the congruence modulo N is given by the product of the number of such solutions for these
prime power moduli. (See e.g., [1], Theorem 5.28, p. 118-119.)
Each of these two congruences with moduli of prime powers peii , with ei ≥ 2, is reduced to congruences
with only single pis, and in the case at hand with the integer polynomial f(x) = x2 − 5 the lifting
theorem given in [1], Theorem 5.30, pp. 121-122, needs only part (a), with f ′(r) = 2 r 6≡ 0 (modpi).
In this case there is a unique lifting from each solution r of x2 − 5 ≡ 0 (modpei − 1

i ), for ei ≥ 2, to
a solution a of x2 − 5 ≡ 0 (modpeii ), and a = r + q pei − 1

i with the unique solution q of the linear
congruence q 2 r + k ≡ 0 (modpi), where k is given by f(r) = r2 − 5 = k pei−1

i .
The indirect proof that 2 r 6≡ 0 (modpi), i.e., r 6= mpi, for each solution r2 − 5 = k pei−1

i is trivial
because then 5 = pi (m

2 pi − k pei−2
i ), a contradiction because pi 6= 5.

6) First one studies the congruence x2 − 5 ≡ 0 (modp), for each odd prime p 6= 5. With this prime
modulus and degree 2 it has either no solution or 2 (different) representative solutions. The Legendre

symbol
(
5
p

)
equals +1 iff 5Rp, −1 iff not(5Rp). The computation of the symbol uses first Gauss’s

quadratic reciprocity law (see e.g., [1] Theorem 9.8, p. 185) and then Euler’s criterion ([1], Theorem 9.6,
p. 182).

(
5

p

)
=

(p
5

)
≡ p2 (mod 5) =





+1, for p ≡ ±1 (mod 5),

−1, for p ≡ ±2 (mod 5).
. (14)

One uses (for p 6= 5) 1/
(p
5

)
=

(p
5

)
. The four cases for p congruent to 5 lead to the last equation. (See

also [10], p. 159.)
Thus, for positive N 6≡ 0 (mod 5) a solvable N has only powers of (odd) primes 1 or 4 (mod 5) in its
decomposition. Elements of these two classes of primes will be denoted by p+1,i or p−1,j, with exponents
e+1,i or e−1,j respectively.
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If N ≡ 0 (mod 5) the factor 5 (no higher power of it) is also present from statement 4).

7) Lemma 2:

The number of representative solutions #Sol(N) for each of the two congruences modulo
N = 5e5

∏r+1

i=1 p
e+1,i

+1,i

∏r
−1

j=1 p
e
−1,j

−1,j is thus given by

#Sol(N) = 2r+1 + r
−1 . (15)

Proof: See the first part of statement 5). #Sol(N) for x2 − 5 ≡ 0 (modN) is identical with
#Sol(N) for x2 + x − 1 ≡ 0 (modN) due to statement 3). For the first congruence the unique
sequential lifting (see statement 5)) from solutions modulo a prime p 6= 5 to solutions of powers of
this prime implies that the number of solutions stays 0 or 2. If 5 divides N then statements 2) and 4)
show that the unique representative solution for p = 5 does not matter for this counting of solutions.

This ends also the proof of the statement given at the beginning of this section which is given here as

Proposition:
i) The congruences x2 + x − 1 ≡ 0 (modN), x2 − x − 1 ≡ 0 (modN), and x2 − 5 ≡ 0 (modN) have
for positive N proper solutions precisely for

N = 1, and N = 5e5
r+1∏

i=1

p
e+1,i

+1,i

r
−1∏

j=1

p
e
−1,j

−1,j , (16)

where p+1,i and p−1,j are primes congruent to +1 and −1 modulo 5, respectively, and e5 ∈ {0, 1},
e+,i, e−1,j ∈ N0 .
ii) he number of representative solutions #Sol(N) is given in Lemma 2.

iii) These numbers N coincide by Lemma 1, part iii), with the ones from A089270 which collects all
representable positive numbers N for the principal form Fp = [1, 1 − 1] of discriminant 5.

8) In order to find the solutions of these congruences (it is sufficient to know the ones for x2 − 5 ≡
0 (modN)) one needs for composite N with products of 5 and powers of primes ±1 (mod 5) the Chinese
remainder theorem (CRT) (e.g., [1],Theorem 5.26, p. 117-118). For the solutions of powers of a prime
from the ones for the prime by the lifting theorem (point 5)) one has to solve linear congruences. We
give two examples.

a) N = 112. The two representative solutions for the congruence x2 − 5 ≡ 0 (mod 11) are found by
finding the smallest positive k such that x̃ =

√
5 + k · 11 is integer, viz k = 1. Hence the two solutions

are ±x̃ = ±4 (mod 11), and in the first non-negative residue system modulo 11 this is x̃ = 4 and 7 (see
Table 7, n = 3). For the lifting to 112 one has to solve (see point 5)) for each of these two solutions
r the linear congruence q(r) 2 r + k(r) ≡ 0 (mod 11). Here k(4) = 1 and k(7) = 4. Then q(4) = 4
(from 8 · 4 + 1 = 33) and q(7) = 6 (from 14 · 6 + 4 = 88). Therefore the two solutions for 112 are
a(4) = 4 + 4 · 11 = 48 and a(7) = 7 + 6 · 11 = 73. See Table 7, row n = 17. In the next lifting step
one finds for N = 113 = 1331 the two representative solutions 73 and 1258.
The two solutions for x2 + x − 1 ≡ 0 (mod 112) are with point 3) obtained directly from ±x̃, with
x̃ =

√
5 + k · 4 · 112, and k = 11 leads to x̃ = 73. Hence x± = ±x̃− 1

2 (mod 121) or representatives
x+ = 36, and x− = 121 − 74/2 = 84 (see Table 6, row n = 17).
Note that the odd solution 73 obtained from the lifting to 112 satisfies 732 − 5 = 44 · 121, therefore
it appeared again in the solution modulo 4 · 112, and −73 (mod 484) = 411. From 410/2 = 205 ≡
84 (mod 121), the other solution x− is found directly above.

b) N = 112 ·19 = 2299. The 2 ·2 = 4 representative solutions ri, for i = 1, 2, ..., 4 , are found viaCRT
from the pairs of representative solutions for 112 and 19, viz (48, 9), (48, 10), (73, 9) and (73, 10). The
first pair leads to r1 = 48 + k · 121 = 9 + l · 19, hence r1 = 1016, for k = 8 and l = 53. Also r2 = 48,
r3 = 2299 − 1016 = 1283 and r4 = 2299 − 48 = 2251.
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We close by explaining Table 8. It is obvious that each (x, y = 1), for x ∈ N is one of the proper
fundamental solution of Fp = N , for some N = N(x) ∈ N (for N = 1 one takes, as explained above,
(1, 1) instead of (1, 0) from Table 4). However, not every positive N which has proper solutions of
Fp = N , viz N = N(n) =A089127(n), for n ∈ N, has a fundamental solution (x, 1). E.g., N(6) = 31
has one pair of fundamental solutions (5, 2) and (5, 3) (see Table 4).
The numbers N which have fundamental solutions (x, 1) are given in A028387(x − 1), for x ∈ N. See
Lemma 1 i).
For numbers N which have k 6= 1 in Table 8 one wants to determine a number N̂ = k N , with a positive
integer k such that Fp = N̂ has a solution (x̂, 1). This leads to the equation 2 x̂± + 1 = ±x̃, with
x̃ =

√
5 + 4 k N , and the least positive k which produces a positive integer x̃ is searched. These k have

to have the structure given in the Proposition for N , because they satisfy x2 − 5 = 4 kN ≡ 0 (modk)
with the known structure for k instead of N . These k are found for n = 1, 2, ..., 60 , including the N(n)
values which have fundamental solution (x(n), 1) (for k = k(n) = 1). If one could prove that for each
N(n) =A089270(n) without a fundamental solution (x, 1) there exits a k(n) such that N̂(n) = k(n)N(n)
has a fundamental solution (x̂, 1), then one would have another, independent proof of the Proposition,

because then, N(n) = N̂(n)
k(n) . Therefore, the structure of N would follow from the ones of N̂ and k, just

by subtracting from the exponents of the primes ±1 (mod 5) or 5 of N̂(n) the ones of the smaller k(n).
This seems not to be obvious. N̂ , having solution (x̂, 1), is guaranteed to have the structure one wants to
prove for N , and not all values appear, viz precisely the ones with k = 1 are missing. The Pell equation
u2 − 5 v2 = M should have solutions (u, 1) for M = 4 k N(n) for some k = k(N) ≥ 1 and all n ∈ N

(which is now proved as a corollary to the Proposition, but not independently). In Table 8 the column
x̃ = x̃(n) solves x̃(n)2 − 5 = 4 kN(n), for k given in the third column, hence u = u(n) = x̃(n). See
also Table 7 where these x̃ values appear together with N − x̃.
Note that N̂ may occur for different N values. E.g., 89 · N(5) = 79 · N(57) = 5 · 79 · 89 = 35155.
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Table 1: Representative parallel primitive forms (rpapfs) for discriminant 5 and N with their t-tuples

n N rpapfs t-tuple (x(N,j;0), y(N,j;0))

1 1 [1, 1,−1] = Fp no ~t (1, 0)
2 5 [5, 5, 1] (3) (3,−1)
3 11 [11, 7, 1], [11, 15, 5] (4), (1,−2) (4,−1), (−3,−1)
4 19 [19, 9, 1], [19, 29, 11] (5), (1,−3) (5,−1), (−4,−1)
5 29 [29, 11, 1], [29, 47, 19] (6), (1,−4) (6,−1), (−5,−1)
6 31 [31, 25, 5], [31, 37, 11] (2,−2), (1,−2) (−5,−2), (5, 3)
7 41 [41, 13, 1], [41, 69, 29] (7), (1,−5) (7,−1), (−6,−1)
8 55 [55, 15, 1], [55, 95, 41] (8), (1,−6) (8,−1), (−7,−1)
9 59 [59, 51, 11], [59, 67, 19] (2,−3), (1,−2,−2,−2) (−7,−2), (−7,−5)
10 61 [61, 35, 5], [61, 87, 31] (3,−2), (1,−3,−2) (−7,−3), (7, 4)
11 71 [71, 17, 1], [71, 125, 55] (9), (1,−7) (8,−1), (−8,−1)
12 79 [79, 59, 11], [79, 99, 31] (2,−2,−2), (1,−2,−3) (8, 5), (8, 3)
13 89 [89, 19, 1], [89, 159, 71] (10), (1,−8) (10,−1), (−9,−1)
14 95 [95, 85, 19], [95, 105, 29] (2,−4), (1,−2,−2,−2,−2) (−9,−2), (9, 7)
15 101 [101, 45, 5], [101, 157, 61] (4,−2), (1,−4,−2) (−9,−4), (9, 5)
16 109 [109, 21, 1], [109, 197, 89] (11), (1,−9) (11,−1), (−10,−1)
17 121 [121, 73, 11], [121, 169, 59] (3,−3), (1,−2,−2,−2) (−10,−3), (−10,−7)
18 131 [131, 23, 1], [131, 239, 109] (12), (1,−10) (12,−1), (−11,−1)
19 139 [139, 127, 29], [139, 151, 41], (2,−5), (1,−2,−2,−2,−2,−2) (−11,−2), (−11,−9)
20 145 [145, 105, 19], [145, 185, 59] (2,−2,−2,−2), (1,−2,−4) (−11,−8), (11, 3)
21 149 [149, 81, 11], [149, 217, 79] (3,−2,−2), (1,−3,−3) (11, 7), (11, 4)
22 151 [151, 55, 5], [151, 247, 101] (5,−2), (1,−5,−2) (−11,−5), (11.6)
23 155 [155, 25, 1], [155, 285, 131] (13), (1,−11) (13,−1), (−12,−1)
24 179 [179, 149, 31], [179, 209, 61] (2,−3,−2), (1,−2,−2,−3) (12, 7), (−12,−5)
25 181 [181, 27, 1], [181, 335, 155] (14), (1,−12) (14,−1), (−13,−1)
26 191 [191, 177, 41], [191, 205, 55] (2,−6), (1,−2,−2,−2,−2,−2,−2) (−13,−2), (13, 11)
27 199 [199, 123, 19], [199, 275, 95] (3,−4), (1,−3,−2,−2,−2) (−13,−3), (13, 10)
28 205 [205, 95, 11], [205, 315, 121] (4,−3), (1,−4,−2,−2) (−13. − 4), (−13.− 9)
29 209 [209, 29, 1], [209, 161, 31],

[209, 257, 79], [209, 389, 181] (15), (2,−2,−3), (1,−2,−3,−2) (1,−13) (15,−1), (13, 5), (−13,−8), (−14,−1)
30 211 [211, 65, 5], [211, 357, 151] (6,−2), (1,−6,−2) (−13,−6), (13, 7)
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Table 2: AP array of pairs of relatively prime nonnegative integers

n pairs of relative prime pairs #N(n)

1 [(1, 0)] 1
2 [(2, 1)] 1
3 [(3, 1), (3, 2)] 1
4 [(4, 1), (4, 3)] 1
5 [(5, 1], (5, 4)], [(5, 2), (5, 3)] 2
6 [(6, 1), (6, 5)] 1
7 [(7, 1), (7, 6)], [(7, 2), (7, 5)], [(7, 3), (7, 4)] 3
8 [(8, 1), (8, 7)], [(8, 3), (8, 5)] 2
9 [(9, 1), (9, 8)], [(9, 2), (9, 7)], [(9, 4), (9, 5)] 3
10 [(10, 1), (10, 9)], [(10, 3), (10, 7)] 2
11 [(11, 1), (11, 10)], [(11, 2), (11, 9)], [(11, 3), (11, 8)], [(11, 4), (11, 7)], [(11, 5), (11, 6)] 5
12 [(12, 1), (12, 11)], [(12, 5), (12, 7)] 2
13 [(13, 1), (13, 12)], [(13, 2), (13, 11)], [(13, 3), (13, 10)], [(13, 4), (13, 9)], [(13, 5), (13, 8)], [(13, 6), (13, 7)] 6
14 [(14, 1), (14, 13)], [(14, 3), (14, 11)], [(14, 5), (14, 9)] 3
15 [(15, 1), (15, 14)], [(15, 2), (15, 13)], [(15, 4), (15, 11)], [(15, 7), (15, 8)] 4
16 [(16, 1), (16, 15)], [(16, 3), (16, 13)], [(16, 5), (16, 11)], [(16, 7), (16, 9)] 4
17 [(17, 1), (17, 16)], [(17, 2), (17, 15)], [(17, 3), (17, 14)], [(17, 4), (17, 13)], [(17, 5], (17, 12)], [(17, 6), (17, 11)], [(17, 7), (17, 10)], [(17, 8), (17, 9)] 8
18 [(18, 1), (18, 17)], [(18, 5], (18, 13)], [(18, 7), (18, 11)] 3
19 [(19, 1), (19, 18)], [(19, 2], (19, 17)], [(19, 3), (19, 16)], [(19, 4), (19, 15)], [(19, 5], (19, 14)], [(19, 6), (19, 13)], [(19, 7), (19, 12)], [(19, 8), (19, 11)],

[(19, 9), (19, 10)] 9
20 [(20, 1), (20, 19)], [(20, 3), (20, 17)], [(20, 7), (20, 13)], [(20, 9], (20, 11)] 4
... ... ...
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Table 3: Array of representable numbers N of Fp for arrayAP

n N #N(n)

1 [1] 1
2 [5] 1
3 [11, 11] 1
4 [19, 19] 1
5 [29, 29], [31, 31] 2
6 [41, 41] 1
7 [55, 55], [59, 59], [61, 61] 3
8 [71, 71], [79, 79] 2
9 [89, 89], [95, 95], [101, 101] 3
10 [109, 109], [121, 121] 2
11 [131, 131], [139, 139], [145, 145], [149, 149], [151, 151] 5
12 [155, 155], [179, 179] 2
13 [181, 181], [191, 191], [199, 199], [205, 205], [209, 209], [211, 211] 6
14 [209, 209], [229, 229, ], [241, 241] 3
15 [239, 239], [251, 251], [269, 269], [281, 281] 4
16 [271, 271], [295, 295], [311, 311], [319, 319] 4
17 [305, 305], [319, 319], [331, 331], [341, 341], [349, 349], [355, 355], [359, 359], [361, 361] 8
18 [341, 341], [389, 389], [401, 401] 3
19 [379, 379], [395, 395], [409, 409], [421, 421], [431, 431], [439, 439], [445, 445], [449, 449],

[451, 451] 9
20 [419, 419], [451, 451], [491, 491], [499, 499] 4
... ... ...
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Table 4
Array of proper fundamental solutions (pfsols) representing N with form Fp = [1, 1, −1]

n N pfsols (x,y) n N pfsols (x,y)

1 1 [(1, 0)] 31 229 [(14, 3), (14, 11)]
2 5 [(2, 1)] 32 239 [(15, 1), (15, 14)]
3 11 [(3, 1), (3, 2)] 33 241 [(14, 5), (14, 9)]
4 19 [(4, 1), (4, 3)] 34 251 [(15, 2), (15, 13)]
5 29 [(5, 1], (5, 4)] 35 269 [(15, 4), (15, 11)]
6 31 [(5, 2), (5, 3)] 36 271 [(16, 1), (16, 15)]
7 41 [(6, 1), (6, 5)] 37 281 [(15, 7), (15, 8)]
8 55 [(7, 1), (7, 6)] 38 295 [(16, 3), (16, 13)]
9 59 [(7, 2), (7, 5)] 39 305 [(17, 1), (17, 16)]
10 61 [(7, 3), (7, 4)] 40 311 [(16, 5), (16, 11)]
11 71 [(8, 1), (8, 7)] 41 319 [(16, 7), (16, 9)], [(17, 2), (17, 15)]
12 79 [(8, 3), (8, 5)] 42 331 [(17, 3), (17, 14)]
13 89 [(9, 1), (9, 8)] 43 341 [(17, 4), (17, 13)], [(18, 1), (18, 17)]
14 95 [(9, 2), (9, 7)] 44 349 [(17, 5), (17, 12)]
15 101 [(9, 4), (9, 5)] 45 355 [(17, 6), (17, 11)]
16 109 [(10, 1), (10, 9)] 46 359 [(17, 7), (17, 10)]
17 121 [(10, 3), (10, 7)] 47 361 [(17, 8), (17, 9)]
18 131 [(11, 1), (11, 10)] 48 379 [(19, 1), (19, 18)]
19 139 [(11, 2), (11, 9)] 49 389 [(18, 5), (18, 13)]
20 145 [(11, 3), (11, 8)] 50 395 [(19, 2), (19, 17)]
21 149 [(11, 4), (11, 7)] 51 401 [(18, 7), (18, 11)]
22 151 [(11, 5), (11, 6)] 52 409 [(19, 3), (19, 16)]
23 155 [(12, 1), (12, 11)] 53 419 [(20, 1), (20, 19)]
24 179 [(12, 5), (12, 7)] 54 421 [(19, 4), (19, 15)]
25 181 [(13, 1), (13, 12)] 55 431 [(19, 5), (19, 14)]
26 191 [(13, 2), (13, 11)] 56 439 [(19, 6), (19, 13)]
27 199 [(13, 3), (13, 10)] 57 445 [(19, 7), (19, 12)]
28 205 [(13, 4), (13, 9)] 58 449 [(19, 8), (19, 11)],
29 209 [(13, 5), (13, 8)], [(14, 1), (14, 13)] 59 451 [(19, 9), (19, 10)], [(20, 3), (20, 17)]
30 211 [(13, 6), (13, 7)] 60 461 [(21, 1), (21, 20)]

13



Table 5
A-numbers for Fibonacci sequences with relative prime inputs for n = 1..30

n N inputs (a,b) = (x,y) A-numbers

1 1 (1, 0) A00045(n− 1)
2 5 (2, 1) A00032(n)
3 11 (3, 1), (3, 2) A104449(n), A013655(n)
4 19 (4, 1), (4, 3) A022095(n − 1), A022120(n− 1)
5 29 (5, 1), (5, 4) A022096(n − 1), A022130(n− 1)
6 31 (5, 2), (5, 3) A022113(n − 1), A022121(n− 1)
7 41 (6, 1), (6, 5) A022097(n − 1), A022136(n− 1)
8 55 (7, 1), (7, 6) A022098(n − 1), A022388(n− 1)
9 59 (7, 2), (7, 5) A022114(n − 1), A022137(n− 1)
10 61 (7, 3), (7, 4) A022122(n − 1), A022131(n− 1)
11 71 (8, 1), (8, 7) A022099(n − 1) ,A022389(n− 1)
12 79 (8, 3), (8, 5) A022123(n − 1), A022138(n− 1)
13 89 (9, 1), (9, 8) A022100(n − 1), A022390(n− 1)
14 95 (9, 2), (9, 7) A022115(n − 1), A190995(n)
15 101 (9, 4), (9, 5) A022132(n − 1), A022139(n− 1)
16 109 (10, 1), (10, 9) A022101(n − 1), A184959(n)
17 121 (10, 3), (10, 7) A022124(n − 1), A190996(n)
18 131 (11, 1), (11, 10) A022102(n − 1), A185691(n− 1)
19 139 (11, 2), (11, 9) A022116(n − 1), A206422(n+ 1)
20 145 (11, 3), (11, 8) A022125(n − 1), A206420(n+ 1)
21 149 (11, 4), (11, 7) A022133(n − 1), A206419(n+ 1)
22 151 (11, 5), (11, 6) A022140(n − 1), A166025(n− 1)
23 155 (12, 1), (12, 11) A022103(n − 1), A097657(n− 1)
24 179 (12, 5), (12, 7) A022141(n − 1),A206423(n + 1)
25 181 (13, 1), (13, 12) A022104(n − 1), A186620(n− 1)
26 191 (13, 2), (13, 11) A022117(n − 1), A206607(n+ 1)
27 199 (13, 3), (13, 10) A022126(n − 1), A206608(n+ 1)
28 205 (13, 4), (13, 9) A022134(n − 1), A206609(n+ 1)
29 209 (13, 5), (13, 8) A022142(n − 1), A206610(n+ 1)

(14, 1), (14, 13) A022105(n − 1), A206564(n+ 1)
30 211 (13, 6), (13, 7) A206612(n + 1), A206611(n+ 1)
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Table 6
Representative solutions of x2 + x − 1 ≡ 0 (modN(n)), for n = 1, 2, ..., 60

n N solutions (mod N) n N solutions (mod N)

1 1 0 31 229 (81, 147)
2 5 2 32 239 (15, 223)
3 11 (3, 7) 33 241 (51, 189)
4 19 (4, 14) 34 251 (117, 133)
5 29 (5, 23) 35 269 (71, 197)
6 31 (12, 18) 36 271 (16, 254)
7 41 (6, 34) 37 281 (37, 243)
8 55 (7, 47) 38 295 (92, 202)
9 59 (25, 33) 39 305 (17, 287)
10 61 (17, 43) 40 311 (58, 252)
11 71 (8, 62) 41 319 (139, 179), (150, 168)
12 79 (29, 49) 42 331 (116, 214)
13 89 (9, 79) 43 341 (18, 322), (80, 260)
14 95 (42, 52) 44 349 (143, 205)
15 101 (22, 78) 45 355 (62, 292)
16 109 (10, 98) 46 359 (105, 253)
17 121 (36, 84) 47 361 (42, 318)
18 131 (11, 119) 48 379 (19, 359)
19 139 (63, 75) 49 389 (151, 237)
20 145 (52, 93) 50 395 (187, 207)
21 149 (40, 108) 51 401 (111, 289)
22 151 (27, 123) 52 409 (129, 279)
23 155 (12, 142) 53 419 (20, 398)
24 179 (74, 104) 54 421 (110, 310)
25 181 (13, 167) 55 431 (90, 340)
26 191 (88, 102) 56 439 (69, 369)
27 199 (61, 137) 57 445 (187, 257)
28 205 (47, 157) 58 449 (165, 283)
29 209 (14, 194), (80, 128) 59 451 (47, 403), (157, 293)
30 211 (32, 178) 60 461 (21, 439)
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Table 7
Representative solutions of x2 − 5 ≡ 0 (modN(n)), for n = 1, 2, ..., 60

n N solutions (mod N) n N solutions (mod N)

1 1 0 31 229 (66, 163)
2 5 0 32 239 (31, 208)
3 11 (4, 7) 33 241 (103, 138)
4 19 (9, 10) 34 251 (16, 235)
5 29 (11, 18) 35 269 (126, 143)
6 31 (6, 25) 36 271 (33, 238)
7 41 (13, 28) 37 281 (75, 206)
8 55 (15, 40) 38 295 (110, 185)
9 59 (8, 51) 39 305 (35, 270)
10 61 (26, 35) 40 311 (117, 194)
11 71 (17, 54) 41 319 (18, 301), (40, 279)
12 79 (20, 59) 42 331 (98, 233)
13 89 (19, 70) 43 341 (37, 304), (161, 180)
14 95 (10, 85) 44 349 (62, 287)
15 101 (45, 56) 45 355 (125, 230)
16 109 (21, 88) 46 359 (148, 211)
17 121 (48, 73) 47 361 (85, 276)
18 131 (23, 108) 48 379 (39, 340)
19 139 (12, 127) 49 389 (86, 303)
20 145 (40, 105) 50 395 (20, 375)
21 149 (68, 81) 51 401 (178, 223)
22 151 (55, 96) 52 409 (150, 259)
23 155 (25, 130) 53 419 (41, 378)
24 179 (30, 149) 54 421 (200, 221)
25 181 (27, 154) 55 431 (181, 250)
26 191 (14, 177) 56 439 (139, 300)
27 199 (76, 123) 57 445 (70, 375)
28 205 (95, 110) 58 449 (118, 331)
29 209 (29, 180), (48, 161) 59 451 (95, 356), (136, 315)
30 211 (65, 146) 60 461 (43, 418)
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Table 8
Finding N̂(n) = k(n) ·N(n) for pfsols (x̂(n), 1) of Fp = [1, 1,−1] for n = 1, 2, ..., 60

n N k x̃ x̂ N̂ n N k x̃ x̂ N̂

1 1 1 3 1 1 31 229 29 163 81 6641
2 5 1 5 2 5 32 239 1 31 15 239
3 11 1 7 3 11 33 241 11 103 51 2651
4 19 1 9 4 19 251 251 55 235 117 13805
5 29 1 11 5 29 35 269 19 143 71 5111
6 31 5 25 12 155 36 271 1 33 16 271
7 41 1 13 6 41 37 281 5 75 37 1405
8 55 1 15 7 55 38 295 29 185 92 8555
9 59 11 51 25 649 39 305 1 35 17 305
10 61 5 35 17 305 40 311 11 117 58 3421
11 71 1 17 8 71 41 319 61 279 139 19459
12 79 11 59 29 869 42 331 41 233 116 13571
13 89 1 19 9 89 43 341 1 37 18 341
14 95 19 85 42 1805 44 349 59 287 143 20591
15 101 5 45 22 505 45 355 11 125 62 3905
16 109 1 21 10 109 46 359 31 211 105 11129
17 121 11 73 36 1331 47 361 5 85 42 1805
18 131 1 23 11 131 48 379 1 39 19 379
19 139 29 127 63 4031 49 389 59 303 151 22951
20 145 19 105 52 2755 50 395 89 375 187 35155
21 149 11 81 40 1639 51 401 31 223 111 12431
22 151 5 55 27 755 52 409 41 259 129 16769
23 155 1 25 12 155 53 419 1 41 20 419
24 179 31 149 74 5549 54 421 29 221 110 12209
25 181 1 27 13 181 55 431 19 181 90 8189
26 191 41 177 88 7831 56 439 11 139 69 4829
27 199 19 123 61 3791 57 445 79 375 187 35155
28 205 11 95 47 2255 58 449 61 331 165 27389
29 209 1 29 14 209 59 451 5 95 47 2255
30 211 5 65 32 1055 60 461 1 43 21 461
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