Fibonacci sequences with relative prime initial conditions, and the binary quadratic form [1, 1, -1]

Wolfdieter L a n g ¹

Abstract

This is a comment on Brousseau's [3] ordering of Fibonacci sequences with relative prime inputs. It relates to the integer proper solutions of the indefinite binary quadratic form $x^2 + xy - y^2 = N$ with integer N. This is the principal reduced form of discriminant 5, a member of a 2-cycle of forms. The corresponding representative parallel primitive forms lead to the solutions, expressible in terms of Chebyshev's polynomials $\{S(n,3)\}_{n \ge -2}$.

1 The binary quadratic form [1, 1, -1]

For details on indefinite binary quadratic forms see the Buell [2] and Scholz-Schoeneberg [9] references, and also the author's paper [6], given as a link in $\underline{A225953}$, where proofs are given for some of the later given statements. See also the authors paper [7] (with a link in $\underline{A324251}$) on Pell cycles and graphs. Computations have been done with the help of Maple [4].

The primitive binary quadratic form $x^2 + xy - y^2$ representing an integer N is abbreviated as [a, b, c] = [1, 1, -1], and has discriminant $b^2 - 4ac = 5 = \underline{A003658}(2)$. The class number h(5) of this from is $1 = \underline{A087048}(0)$. This means that there is only one cycle of reduced forms, the one related to the principal reduced form, $viz \ F_p = [1, 1, -1]$ (see [6], $Lemma\ 2$). The right-neighbor form F' = [-1, 1, 1] is the other member of this 2-cycle. The proper equivalence transformation from F_p to F' is obtained by the determinant +1 matrix $\mathbf{R}(t) = Matrix([[0, -1], [1, t]])$, with t = -1, and F' transforms back to F_p with $\mathbf{R}(1)$. Hence the matrix of the automorphic equivalence transformation for this cycle (automorphic matrix, for short) is $\mathbf{Auto}(5) = \mathbf{R}(-1) \mathbf{R}(1)$, which is

$$\mathbf{Auto}(5) = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}. \tag{1}$$

The k-th power of this matrix is (via the Cayley-Hamilton theorem)

$$\mathbf{Auto}(5)^k = \begin{pmatrix} S(k-1,3) - S(k-2,3), & S(k-1,3) \\ S(k-1,3), & S(k,3) - S(k-1,3) \end{pmatrix}, \text{ for } k \in \mathbb{Z},$$
 (2)

where the Chebyshev polynomial system $\{S(n,3)\}_{n\in\mathbb{Z}}$ enters, with $S(n,3) = \underline{\text{A001906}}(n+1)$, for n = -1, 0, ..., with S(-2, 3) = -1, and S(-|k|, 3) = -S(|k| - 2, 3), for $k \in \mathbb{N}_0$.

Auto(5)^k, for $k \in \mathbb{Z} \setminus 0$, gives all integer proper solutions $(x(N,j;k), y(N,j;k))^{\top}$ (\top for transposed, and proper meaning that gcd(x(N,j;k), y(N,j;k)) = 1) of $x^2 + xy - y^2 = N$, originating from each of the j = 1, ..., #pfsols(N) proper nonnegative fundamental solutions $(pfsols)(x(N,j;0), y(N,j;0))^{\top}$ by

$$\begin{pmatrix} x(N,j;k) \\ y(N,j;k) \end{pmatrix} = \mathbf{Auto}(5)^k \begin{pmatrix} x(N,j;0) \\ y(N,j;0) \end{pmatrix}, \text{ for } j = 1, 2, ..., \#pfsols(N), k \in \mathbb{Z}.$$
 (3)

¹ wolfdieter.lang@partner.kit.edu, http://www.itp.kit.edu/~wl

In general there is no formula for giving these *pfsols*, only prescriptions scanning certain candidates are known. (*e.g.*, for the general *Pell* equations there are the inequalities given by Nagell [5], *Theorems* 108 and 108b).

We prefer to use the method which searches for all so-called representative parallel primitive forms (rpapfs) for a given discriminant Disc (here Disc = 5) and a representation of N. (This has been explained in detail, with references, for the general Pell equations in [7]).

A remark on the primitive but not reduced form $\widehat{F} = [1, -1, -1]$ of discriminant 5. It is properly equivalent to the principal form $F_p = [1, 1, -1]$ by two R-transformations, $viz \ \mathbf{R}(1) \ \mathbf{R}(0)$. This means (up to an overall sign change) that each relative prime (proper) solution (X, Y) representing \widehat{F} with value N is a proper solution (x, y) of F_p representing N with x = X - Y and y = Y. Vice versa, (X, Y), with X = x + y and Y = y, solves $\widehat{F} = N$ properly if (x, y) solves $F_p = N$ properly. This fact will be used later in connection with the approach of Brother Alfred (A. Brousseau) [3]. The exchange of indeterminates in F_p leads to $F_p(yx) = -\widehat{F}(x, y)$.

The principal form F_p is symmetric under $x \to -x$ together with $y \to -y$, hence, by an overall sign change, we may restrict to solutions of $F_p(x, y) = N$ with x > 0. Whenever a given formula produces a non-positive solution for x, such an overall sign change is applied but not always mentioned.

Because the change $x \to -y$ and $y \to x$ produces from a solution with positive N a solution for -N (possibly with the mentioned overall sign change to obtain again x > 0) we restrict ourselves to positive N in the following. There is no solution for N = 0, because this change for N = 0 implies (x, y) = (-y, x), but $\gcd(0, 0) \neq 1$.

It is clear that proper solutions (x, y) can lead only to odd N, because the non-trivial case odd-odd leads to a result congruent to $1 \pmod{2}$.

Each possible value of N represented properly by F_p is congruent to 0 or -1 or +1 modulo 5, as can be seen by checking the 15 cases $x \geq y$ modulo 5. However, not all 0, -1, $+1 \pmod{5}$ numbers appear, $e.g., N = 5^2 = 25$ has no proper solution. There are conjectures on the set \mathcal{N} of allowed N values given in comments on $\underline{A089270}$. This paper is intended to prove them.

At this stage we can state the following *Lemma* which will be needed in the discussion of *section 3*. Part iii) appeared as a conjecture for solutions of $x^2 - x - 1 = 0 \pmod{N}$, and can be proven similarly (see *section 3*).

Lemma 1:

- i) Every pair (x, y = 1), with $x \in \mathbb{N}$, is a positive fundamental proper solution of $F_p = N \ge 1$, where $N = N(x) = x^2 + x 1 = 2T(x) 1 = \underline{A028387}(x-1)$, with the triangular numbers $T = \underline{A000217}$, is odd, and satisfies $N(x) \equiv 0$ or 1 or $4 \pmod{5}$.
- ii) The sequence $\{N(x)\}_{x\geq 1}$ is a proper sub-sequence of <u>A089270</u> that records \mathcal{N} , the set of values of N for all possible proper solutions of $x^2 + xy y^2 = N$. See also Table 4, and N in Table 8 with k = 1. iii) The indefinite binary quadratic form $x^2 + xy y^2$ has a proper representation of $N \geq 1$ if and only
- if N solves the congruence $x^2 + x 1 \equiv 0 \pmod{N}$.

Proof:

- i) This special case is obvious. Note that in the case $F_p = N = 1$ on can replace the positive fundamental solution (1, 1) by the non-negative one (1, 0), and $(1, 1)^{\top} = \mathbf{Auto}(\mathbf{5})$, $(1, 0)^{\top}$.
- ii) Also obvious.
- iii) This follows from the representative parallel primitive forms (rpapfs) for discriminant Disc (here Disc = 5) and representation $N \ge 1$. The class number is $1 = \underline{A087048}(0)$, which tells that there is only one cycle of reduced primitive forms, and all rpapfs reduce to the principal form of this cycle. See [9], paragraph 27, pp. 104-105 (where only primitive forms are considered). For the procedure for the odd Disc case see [7], p. 4.

These rpapfs are [N, b(j), c(j)] with $j \in \{0, 1, ..., N-1\}$ such that $c(j) = \frac{j(j+1)-(5-1)/4}{N}$ becomes an integer number, and b(j) = 2j+1. But this means to solve the congruence $j^2 + j - 1 \equiv 0 \pmod{N}$ for j.

The possible values for N will be found in section 3, and the trivial solution (1, 0) of the rpapfs will be important.

The formula eq. (2) leads to the following result on the k-family of each of the $j \in \{1, 2, ..., \#pfsols(N)\}$ solutions for a given non-negative fundamental proper solution x(N, j; 0) = a > 0 and $y(N, j; 0) = b \ge 0$ with a - b > 0, implying N > 0.

$$x(N,j;k) = (a+b)S(k-1,3) - aS(k-2,3),$$

$$y(N,j;k) = bS(k,3) + (a-b)S(k-1,3), \text{ for } k \in \mathbb{Z}.$$
(4)

 $x(N,j;1) \geq y(N,j;1)$, and equality holds only for N=1, and x(N,j;k) > y(N,j;k) for $k \geq 2$. For negative k it is clear from the rule for negative indices of the S polynomials that y(N,j;-|k|) < 0 for $|k| \in \mathbb{N}$, hence x(N,j;-|k|) > y(N,j;-|k|) trivially, because by an overall sign change always x(N,j;-|k|) > 0. These statements follow by using the S- recurrence and the positivity S(k,3) for $k \geq 0$. E.g., for $k \geq 0$ one finds x(N,j;-|k|) - y(N,j;-|k|) = -((a-b)S(k-2,3) + bS(k-1,3)), which is $-b \leq 0$ for k=1, and equality holds only for N=1.

In Table 1 the rpapfs are listed for representable $N = N(n) = \underline{\text{A089270}}(n)$ values, for $n \geq 1$. One obtains from each of these #pfsols(N) parallel forms a corresponding pfsol by repeated $\mathbf{R}(t)$ transformations until one reaches the principal form F_p . The corresponding t-tuples are listed as $\vec{t}(N,j) = (t_1(N,j), \dots t_{tmax(N,j)}(N,j))$. It is known (see e.g., [9], Satz 79, p. 113) that every primitive (!) form is equivalent to a reduced form (in our case to F_p).

$$\begin{pmatrix} x(N,j;0) \\ y(N,j;0) \end{pmatrix} = \mathbf{R}^{-1}(t_{tmax(N,j)}(N,j)) \cdots \mathbf{R}^{-1}(t_1(N,j)) \begin{pmatrix} 1 \\ 0 \end{pmatrix} \text{ for } j = 1, 2, ..., \#pfsols(N) . (5)$$

is a fundamental solution, but not necessarily a positive one. However application of positive powers of the **Auto**(5) matrix will lead to a first positive fundamental form.

Example: $N = 11 = \underline{A089270}(3)$, with #pfsols(11) = 2 rpapfs Pa1 = [11, 7, 1] and Pa2 = [11, 15, 5] with $\vec{t}(11, 1) = (4)$, and $\vec{t}(11, 2) = (1, -2)$, with the intermediate form [5, -5, 1]. Thus

$$\begin{pmatrix} x(11,1;0) \\ y(11,1;0) \end{pmatrix} = \mathbf{R}^{-1}(4) \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 4 \\ -1 \end{pmatrix}. \tag{6}$$

In this case the first positive *pfsol* for $F_p = 11$ is

$$\begin{pmatrix} x(11,1;1) \\ y(11,1;1) \end{pmatrix} = \mathbf{Auto}(5) \begin{pmatrix} x(11,1;0) \\ y(11,1;0) \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 4 \\ -1 \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}. \tag{7}$$

Similarly, the second parallel form leads first to a solutions with x and y negative, so an overall sign flip gives the first positive pfsol:

$$-\begin{pmatrix} x(11,2;0) \\ y(11,2;0) \end{pmatrix} = -\mathbf{R}^{-1}(-2)\mathbf{R}^{-1}(1)\begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}.$$
 (8)

The first family (also known as class) of solutions is then, with eq. (2),

$$\begin{pmatrix}
S(k-1,3) - S(k-2,3), & S(k-1,3) \\
S(k-1,3), & S(k,3) - S(k-1,3)
\end{pmatrix}
\begin{pmatrix}
3 \\
2
\end{pmatrix}, \text{ for } k \in \mathbb{Z}.$$
(9)

This leads to $x(11,1;k) = \underline{\text{A013655}}(2\,k) = [3, 5, 12, 31, 81, 212, 555, 1453, ...],$ and $y(11,1;k) = \underline{\text{A013655}}(2\,k+1) = [2, 7, 19, 50, 131, 343, 898, 2351, ...],$ for $k \in \mathbb{N}_0$. For the second family based on the ppfsol (positive proper fundamental solution) $(3, 1)^{\top}$ one finds the bisection of $\underline{\text{A104449}}(2\,k) = \underline{\text{A104449}}(2\,k)$ and $y(11,2;k) = \underline{\text{A104449}}(2\,k+1)$. These are the two Fibonacci sequences with the relative prime initial conditions (a(0), b(0)) = (3, 2) and (3, 1), respectively.

From eq. (2) one finds for any given positive proper fundamental solution $(a(N,j), b(N,j))^{\top}$ the ordinary generating functions (o.g.f.s) for the solutions (x(N,j;k), y(N,j;k)) for $j \in \{1, 2, ..., \#pfsols\}$ and $k \in N_0$, named (Gx(N,j;t), Gy(N,j;t)), the results

$$Gx(N,j;t) = \frac{a(N,j) - t(2a(N,j) - b(N,j))}{1 - 3t + t^2}, \quad Gy(N,j;t) = \frac{b(N,j) + t(a(N,j) - b(N,j))}{1 - 3t + t^2}.$$
(10)

These o.g.f.s coincide, for each given N and j, with the bisection of Fibonacci sequences $\{F(a,b;n)\}_{n\geq 0}$ with inputs F(a,b;0)=a and F(a,b;1)=b, and F(a,b;n)=F(a,b;n-1)+F(a,b;n-2), for $n\geq 2$, viz

$$GF_{even}(a,b;t) := \sum_{k=0}^{\infty} F(a,b;2k) t^k = \frac{a-t(2a-b)}{1-3t+t^2},$$
 (11)

$$GF_{odd}(a,b;t) := \sum_{k=0}^{\infty} F(a,b;2k+1) t^k = \frac{b+t(a-b)}{1-3t+t^2}.$$
 (12)

2 Ordering of Fibonacci sequences with relative prime initial conditions

Brother Alfred [3] considered Fibonacci sequences with relative prime nonnegative initial conditions (a, b), with a < b and defined for these sequences a certain order.

We give a slightly different approach here. In effect all pairs of relative prime non-negative integers (n,k) with $n\geq k\geq 1$ and $\gcd(n,k)=1$ are first collected in a certain way in an array with row label n and row length $\varphi(n)=\text{A000010}(n)$. The array of positive integers relative prime to n is $\frac{\text{A038566}}{\text{A038566}}$, for n>=1, which we name AGCD with entry AGCD(n,m), $m=1,2,...,\varphi(n)$. But instead of $\frac{\text{A038566}}{\text{A038566}}(1,1)=1$ we take AGCD(1,1):=0. Then in the array A(n,m), for $n\geq 1$, of pairs of relative prime integers one takes for all n with $\varphi(n)=1$ or 2 the pair (n,AGCD(n,m)), for $m=1,2,...,\varphi(n)$. Hence the first four rows are [(1,0)], [(2,1)], [(3,1), (3,2)], [(4,1), (4,3)], and row n=6 is [(6,1),(6,5)]. For row n with $\varphi(n)=2l$, with $l\geq 2$ one considers a reordered row of $\frac{\text{A038566}}{\text{A038566}}(n)$, namely $\frac{\text{Sequence}}{AGCD(n,k)}$, $\frac{AGCD(n,\varphi(n)-(k-1))}{\text{for }k=1,2,...,\varphi(n)/2}$. Thus the reordered row n=5 of AGCD(n,k) becomes 1,4,2,3. This reordered array AGCD is named AGCD'. Finally, row n of an array AP of pairs is obtained by AP(n,m)=(n,AGCD'(n,m)), for $n\geq 1$. This array AP is shown in $Table\ 2$. For the corresponding representable values N for $F_p(x=n,y=AGCD'(n,m))$ see $Table\ 3$.

In Table 2 two neighboring pairs appear within square brackets, for $n \geq 3$. The number of these pairs of pairs is named #N(n). The reason for this grouping of two pairs is that (x1,y1) and (x2,y2) are positive fundamental solutions leading to the same $N = x^2 + xy - y^2$ value. See Table 3. That pairs collected in a square bracket lead to the same N value is trivial, because (n,k) and (n,n-k) satisfy both $N = n^2 + nk - k^2$, but only pairs with $\gcd(n,k) = 1$ qualify (implying that also $\gcd(n,n-k) = 1$ because $\gcd(n,-k) = \gcd(n,k)$).

#N(n) tells how many representable numbers N are obtained from pairs of array AP with first entry n. (For n=1 and n=2 there is no pair, and #N(n) is set to 1). E.g., #N(7)=3, because N=55, 59, 61 have solutions with first entry 7. Of course, some representable N numbers may have solutions from pairs belonging to different n values; e.g., $N=209=11\cdot 19$ has four proper fundamental solutions (this N being the first instance with two square bracket pairs), namely from one bracket pair for n=13 and one from n=14: [(13,5), (13,8)] and [(14,1), (14,13)] (see $Table\ 4$).

In Table 4 the square bracket terms from array AP of Table 2 which lead to the same representable value N are collected. Thus for N=1 we used the proper fundamental solution (1,0), not the positive one (1,1), obtained by applying $\mathbf{Auto}(5)$.

An ordering of Fibonacci sequences $\{F(a,b,n\}_{n\geq 0} \text{ with relative prime initial conditions } F(a,b;0) = a$ and F(a,b;1) = b, with a > b, is now obtained by using a = x and b = y of the proper fundamental solutions, ordering with rising N, and within like N the pairs (x,y) are ordered lexicographically. E.g., the first sequence is (1,0), the fourth is (3,2), and (14,1) with N = 209 is the 57th sequence (in Brother Alfred's counting it corresponds to his (1,15) appearing at position 55.

This order is similar to the one of Brother Alfred with value D=N, but his pairs (f_0, f_1) satisfy $D=f_1^2-f_1f_0-f_0^2$. Thus, using the remark on the form $\widehat{F}=[]1,-1,-1]$ in section 1 above, we have to take $x=f_1-f_0$ and $y=f_0$, or $f_0=y$ and $f_1=x+y$. Thus the ordinary Fibonacci sequence $F=\underline{A00045}$, Brother Alfred's (0,1) becomes now (1,0) which is $F(1,0;n)=\underline{A00045}(n-1)$, for $n\geq 1$, and F(1,0;0)=1=F(-1). Similarly, Brother Alfred's second sequence (1,3) is shifted Lucas $\underline{A000032}(n+1)$, for $n\geq 0$. This becomes $F(2,1;n)=\underline{A000032}(n)$ directly. Also his fourth sequence (1,4) is directly $\underline{A000285}$, whereas our $F(3,1;n)=\underline{A104449}(n)=\underline{A000285}(n-1)$, for $n\geq 0$. Note a typo in [3] for D=31; the second pair should be (3,8) (not (2,8).

In conclusion the two orderings of Fibonacci sequences with relative prime initial conditions differ. Brother Alfred used rising non-negative pairs of integers whereas we use falling ones. The translation between these pairs has been given. Because $x + y = f_1$ and $y = f_0$ our sequences start with an extra x for n = 0 and then coincide with Brother Alfred's sequence with a shifted index by +1. In the case of more then two pairs for one value D = N, like for N = 209, the order of the pairs, hence of the sequences, differs.

3 Diophantine equations $x^2+x-1\equiv 0\,(mod\,N),$ and $x^2-5\equiv 0\,(mod\,N)$

In this section it will be seen that the Diophantine equations $x^2 + x - 1 \equiv 0 \pmod{N}$, and $x^2 - 5 \equiv 0 \pmod{N}$, with positive N have only solutions for N = 1, and for N with a prime number factorization with only odd primes congruent to $\pm 1 \pmod{5}$ and their powers, multiplied by either 1 or 5. The primes $\pm 1 \pmod{5}$ are given on $\underline{A038872}$ (without the leading 5). From Lemma 1 part iii) these numbers then coincide with $N = N(n) = \underline{A089270}(n)$. This structure of these N has been conjectured by T. D. Noe as a comment in $\underline{A089270}$ from Nov 14 2010. For the congruence $x^2 - x - 1 \equiv 0 \pmod{N}$ this has also been conjectured by T. D. Noe in a Nov 04 2009 comment.

In the following we give a proof for the structure of these N values and the number of representative solutions, starting by listing 7 ingredients for this proof. An additional point 8) is added to show how solutions with composite N are computed from the ones for N=5 and powers of primes congruent to $\pm 1 \pmod{5}$.

1) The solutions of the two quadratic congruences

$$x^{2} + x - 1 \equiv 0 \pmod{N}$$
, and $X^{2} - X - 1 \equiv 0 \pmod{N}$, for $N \in \mathbb{N}$, (13)

are related by X = x + 1. This is trivial. See also the more general remark on the relation between the solutions of the forms $F_p = [1, 1, -1] = N$ and $\hat{F} = [1, -1, -1] = N$ in section 1. Therefore, only the first case will be considered in the following.

2) The congruence $x^2 - 5 \equiv 0 \pmod{N}$ means that 5 is a quadratic residue modulo N, in short 5RN. The case N = 1 is trivial because every integer number is a solution, and the representative solution (in the first non-negative residue class) is 0. For $x^2 + x - 1 \equiv 0 \pmod{1}$ the representative solution is also 0.

The case N=5 is special because $\gcd(5,N)=5\neq 1$. There is just one representative solution from the first non-negative residue class, viz 0. For the other congruence the only representative solution for N=5 is 2.

3) The relation between solutions of $x^2 + x - 1 \equiv 0 \pmod{N}$ and those of $\tilde{x}^2 - 5 \equiv 0 \pmod{4N}$, is given by $2x_{\pm} + 1 = \pm \tilde{x}$, where $\tilde{x} = \sqrt{5 + 4Nk}$, with the least positive integer number k producing a positive \tilde{x} (later these minimal k values for representable N and the (odd) \tilde{x} are listed in Table 8). This is then evaluated modulo N. Hence for the solutions x_{\pm} one needs the solutions $\tilde{x} \pmod{N}$ (it seems that $\tilde{x} < N$ already).

For N=1 one finds from the square root formula $\tilde{x}=3$ with k=1, and $x_+=1$, $x_-=-2$, evaluating modulo 1 to the representatives $\tilde{x} = 0$ and $x_{+} = x_{-} = 0$, which is clear immediately, because every integer satisfies the congruences modulo 1.

For N=5 the results are $\tilde{x}=5$ for k=1 and $x_{+}=2, x_{-}=-3$. Evaluated modulo 5 with the representatives $\tilde{x} = 0$ and $x_{+} = x_{-} = 2$.

For all other solvable positive $N \neq 1$, 5 the representative solutions come in pairs. See Tables 6 and 7 for these representative solutions for solvable N = N(n) (to be determined later) for n = 1, 2, ..., 60. The pairs of solutions are given within brackets. In Table 6 these pairs sum to N-1, and in Table 7 they add to N. Composite N values are underlined.

It follows from section 1 that the first congruence, as a special case of $F_p = N$, for $N \geq 1$, with y = 1, can have only solutions with odd N from the sets $0, \pm 1$ modulo 5 (but as will be shown only the proper subset of solvable N = N(n) values stated in the preamble of this section will survive).

- 4) For $N \equiv 0 \pmod{5}$ the prime number factorization of N has only 5 as a factor; no higher powers of 5 are allowed. For $\tilde{x}^2 - 5 \equiv 0 \pmod{N}$, with $N = 5^{e_5} \hat{N}$, where $e_5 \in \mathbb{N}$, and 5 does not divide \hat{N} , it follows that $5(1 + 5^{e_5-1} m \hat{N}) = \tilde{x}^2$, with an integer number m, but $1 + 5^{e_5-1} m \hat{N} \equiv 1 \pmod{5}$, for $e_5 - 1 \ge 1$. Hence a second factor 5 for $\tilde{x}^2 \ne 0$ is missing, and only $e_5 = 1$ remains. If $\tilde{x}^2 = 0$ then mN = -1 and $e_5 = 1$ also. For general solvable N the exponent of prime number 5 is then $e_5 \in \{0, 1\}$.
- **5)** Each integer solution of $\tilde{x}^2 5 \equiv 0 \pmod{N}$, for positive odd N > 1, is also a solution of all congruences $\tilde{x}^2 - 5 \equiv 0 \pmod{p_i^{e_i}}$, with the powers of odd primes p_i , with $e_i \in \mathbb{N}$, appearing the prime number factorization of N (the prime 5 has exponent 0 or 1). Moreover, the number of representative solutions of the congruence modulo N is given by the product of the number of such solutions for these prime power moduli. (See *e.g.*, [1], Theorem 5.28, p. 118-119.)

Each of these two congruences with moduli of prime powers $p_i^{e_i}$, with $e_i \geq 2$, is reduced to congruences with only single p_i s, and in the case at hand with the integer polynomial $f(x) = x^2 - 5$ the lifting theorem given in [1], Theorem 5.30, pp. 121-122, needs only part (a), with $f'(r) = 2r \not\equiv 0 \pmod{p_i}$. In this case there is a unique lifting from each solution r of $x^2 - 5 \equiv 0 \pmod{p_i^{e_i-1}}$, for $e_i \geq 2$, to a solution a of $x^2 - 5 \equiv 0 \pmod{p_i^{e_i}}$, and $a = r + q p_i^{e_i-1}$ with the unique solution q of the linear congruence $q \cdot 2r + k \equiv 0 \pmod{p_i}$, where k is given by $f(r) = r^2 - 5 = k p_i^{e_i-1}$. The indirect proof that $2r \not\equiv 0 \pmod{p_i}$, i.e., $r \not\equiv m p_i$, for each solution $r^2 - 5 = k p_i^{e_i-1}$ is trivial because then $5 = p_i \pmod{p_i} - k p_i^{e_i-2}$, a contradiction because $p_i \not\equiv 5$.

6) First one studies the congruence $x^2 - 5 \equiv 0 \pmod{p}$, for each odd prime $p \neq 5$. With this prime modulus and degree 2 it has either no solution or 2 (different) representative solutions. The Legendre symbol $\left(\frac{5}{p}\right)$ equals +1 iff 5Rp, -1 iff not(5Rp). The computation of the symbol uses first Gauss's quadratic reciprocity law (see e.g., [1] Theorem 9.8, p. 185) and then Euler's criterion ([1], Theorem 9.6, p. 182).

$$\left(\frac{5}{p}\right) = \left(\frac{p}{5}\right) \equiv p^2 \pmod{5} = \begin{cases}
+1, & \text{for } p \equiv \pm 1 \pmod{5}, \\
-1, & \text{for } p \equiv \pm 2 \pmod{5}.
\end{cases}$$
(14)

One uses (for $p \neq 5$) $1/(\frac{p}{5}) = (\frac{p}{5})$. The four cases for p congruent to 5 lead to the last equation. (See also [10], p. 159.)

Thus, for positive $N \not\equiv 0 \pmod{5}$ a solvable N has only powers of (odd) primes 1 or $4 \pmod{5}$ in its decomposition. Elements of these two classes of primes will be denoted by $p_{+1,i}$ or $p_{-1,j}$, with exponents $e_{+1,i}$ or $e_{-1,j}$ respectively.

If $N \equiv 0 \pmod{5}$ the factor 5 (no higher power of it) is also present from statement 4).

7) Lemma 2:

The number of representative solutions #Sol(N) for each of the two congruences modulo $N=5^{e_5}\prod_{i=1}^{r_{+1}}p_{+1,i}^{e_{+1,i}}\prod_{j=1}^{r_{-1}}p_{-1,j}^{e_{-1,j}}$ is thus given by

$$#Sol(N) = 2^{r_{+1} + r_{-1}}. (15)$$

Proof: See the first part of statement **5**). #Sol(N) for $x^2 - 5 \equiv 0 \pmod{N}$ is identical with #Sol(N) for $x^2 + x - 1 \equiv 0 \pmod{N}$ due to statement **3**). For the first congruence the unique sequential lifting (see statement **5**)) from solutions modulo a prime $p \neq 5$ to solutions of powers of this prime implies that the number of solutions stays 0 or 2. If 5 divides N then statements **2**) and **4**) show that the unique representative solution for p = 5 does not matter for this counting of solutions.

This ends also the proof of the statement given at the beginning of this section which is given here as **Proposition:**

i) The congruences $x^2 + x - 1 \equiv 0 \pmod{N}$, $x^2 - x - 1 \equiv 0 \pmod{N}$, and $x^2 - 5 \equiv 0 \pmod{N}$ have for positive N proper solutions precisely for

$$N = 1, \text{ and } N = 5^{e_5} \prod_{i=1}^{r_{+1}} p_{+1,i}^{e_{+1,i}} \prod_{j=1}^{r_{-1}} p_{-1,j}^{e_{-1,j}},$$

$$(16)$$

where $p_{+1,i}$ and $p_{-1,j}$ are primes congruent to +1 and -1 modulo 5, respectively, and $e_5 \in \{0, 1\}$, $e_{+,i}$, $e_{-1,j} \in \mathbb{N}_0$.

- ii) he number of representative solutions #Sol(N) is given in Lemma 2.
- iii) These numbers N coincide by Lemma 1, part iii), with the ones from $\underline{A089270}$ which collects all representable positive numbers N for the principal form $F_p = [1, 1-1]$ of discriminant 5.
- 8) In order to find the solutions of these congruences (it is sufficient to know the ones for $x^2 5 \equiv 0 \pmod{N}$) one needs for composite N with products of 5 and powers of primes $\pm 1 \pmod{5}$ the Chinese remainder theorem (CRT) (e.g.,[1],Theorem 5.26, p. 117-118). For the solutions of powers of a prime from the ones for the prime by the lifting theorem (point 5)) one has to solve linear congruences. We give two examples.
- a) $N=11^2$. The two representative solutions for the congruence $x^2-5\equiv 0\,(mod\,11)$ are found by finding the smallest positive k such that $\tilde{x}=\sqrt{5+k\cdot11}$ is integer, viz k=1. Hence the two solutions are $\pm \tilde{x}=\pm 4\,(mod\,11)$, and in the first non-negative residue system modulo 11 this is $\tilde{x}=4$ and 7 (see Table 7, n=3). For the lifting to 11^2 one has to solve (see point 5)) for each of these two solutions r the linear congruence $q(r)\,2\,r\,+\,k(r)\equiv 0\,(mod\,11)$. Here k(4)=1 and k(7)=4. Then q(4)=4 (from $8\cdot 4+1=33$) and q(7)=6 (from $14\cdot 6+4=88$). Therefore the two solutions for 11^2 are $a(4)=4+4\cdot11=48$ and $a(7)=7+6\cdot11=73$. See Table 7, row n=17. In the next lifting step one finds for $N=11^3=1331$ the two representative solutions 73 and 1258.

The two solutions for $x^2 + x - 1 \equiv 0 \pmod{11^2}$ are with point **3)** obtained directly from $\pm \tilde{x}$, with $\tilde{x} = \sqrt{5 + k \cdot 4 \cdot 11^2}$, and k = 11 leads to $\tilde{x} = 73$. Hence $x_{\pm} = \frac{\pm \tilde{x} - 1}{2} \pmod{121}$ or representatives $x_{+} = 36$, and $x_{-} = 121 - 74/2 = 84$ (see *Table 6*, row n = 17).

Note that the odd solution 73 obtained from the lifting to 11^2 satisfies $73^2 - 5 = 44 \cdot 121$, therefore it appeared again in the solution modulo $4 \cdot 11^2$, and $-73 \pmod{484} = 411$. From $410/2 = 205 \equiv 84 \pmod{121}$, the other solution x_{-} is found directly above.

b) $N = 11^2 \cdot 19 = 2299$. The $2 \cdot 2 = 4$ representative solutions r_i , for i = 1, 2, ..., 4, are found $via\ CRT$ from the pairs of representative solutions for 11^2 and 19, $viz\ (48, 9)$, (48, 10), (73, 9) and (73, 10). The first pair leads to $r_1 = 48 + k \cdot 121 = 9 + l \cdot 19$, hence $r_1 = 1016$, for k = 8 and l = 53. Also $r_2 = 48$, $r_3 = 2299 - 1016 = 1283$ and $r_4 = 2299 - 48 = 2251$.

We close by explaining Table 8. It is obvious that each (x, y = 1), for $x \in \mathbb{N}$ is one of the proper fundamental solution of $F_p = N$, for some $N = N(x) \in \mathbb{N}$ (for N = 1 one takes, as explained above, (1, 1) instead of (1, 0) from Table 4). However, not every positive N which has proper solutions of $F_p = N$, viz $N = N(n) = \frac{A089127}{n}$, for $n \in \mathbb{N}$, has a fundamental solution (x, 1). E.g., N(6) = 31 has one pair of fundamental solutions (5, 2) and (5, 3) (see Table 4).

The numbers N which have fundamental solutions (x,1) are given in $\underline{A028387}(x-1)$, for $x \in \mathbb{N}$. See Lemma 1 i).

For numbers N which have $k \neq 1$ in Table 8 one wants to determine a number $\hat{N} = k N$, with a positive integer k such that $F_p = \hat{N}$ has a solution $(\hat{x}, 1)$. This leads to the equation $2\hat{x}_{\pm} + 1 = \pm \tilde{x}$, with $\tilde{x} = \sqrt{5 + 4kN}$, and the least positive k which produces a positive integer \tilde{x} is searched. These k have to have the structure given in the *Proposition* for N, because they satisfy $x^2 - 5 = 4kN \equiv 0 \pmod{k}$ with the known structure for k instead of N. These k are found for n=1,2,...,60, including the N(n)values which have fundamental solution (x(n), 1) (for k = k(n) = 1). If one could prove that for each N(n) = A089270(n) without a fundamental solution (x, 1) there exits a k(n) such that $\hat{N}(n) = k(n) N(n)$ has a fundamental solution $(\hat{x}, 1)$, then one would have another, independent proof of the *Proposition*, because then, $N(n) = \frac{\widehat{N}(n)}{k(n)}$. Therefore, the structure of N would follow from the ones of \widehat{N} and k, just by subtracting from the exponents of the primes $\pm 1 \pmod{5}$ or 5 of $\widehat{N}(n)$ the ones of the smaller k(n). This seems not to be obvious. \hat{N} , having solution $(\hat{x}, 1)$, is guaranteed to have the structure one wants to prove for N, and not all values appear, viz precisely the ones with k=1 are missing. The Pell equation $u^2 - 5v^2 = M$ should have solutions (u, 1) for M = 4kN(n) for some $k = k(N) \ge 1$ and all $n \in \mathbb{N}$ (which is now proved as a corollary to the *Proposition*, but not independently). In Table 8 the column $\tilde{x} = \tilde{x}(n)$ solves $\tilde{x}(n)^2 - 5 = 4kN(n)$, for k given in the third column, hence $u = u(n) = \tilde{x}(n)$. See also Table 7 where these \tilde{x} values appear together with $N - \tilde{x}$.

Note that \hat{N} may occur for different N values. E.g., $89 \cdot N(5) = 79 \cdot N(57) = 5 \cdot 79 \cdot 89 = 35155$.

References

- [1] Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1986.
- [2] D. A. Buell, Binary Quadratic Forms, Springer, 1989.
- [3] Brother U. Alfred (Alfred Brousseau), On the ordering of Fibonacci sequences, Fib. Quart. 1.4 (1963), 43-46 http://www.fq.math.ca/Scanned/1-4/alfred1.pdf, and Errata, Fib. Quart. 2.1 (1964), 38; http://www.fq.math.ca/Scanned/2-1/corrections2.pdf.
- [4] $Maple^{TM}$, http://www.maplesoft.com/.
- [5] T. Nagell, Introduction to Number Theory, Chelsea Publishing Company, New York, 1964.
- [6] Wolfdieter Lang, <u>A225953</u>: Periods of Indefinite Binary Quadratic Forms, Continued Fractions and the Pell ±4 Equations, 2013, https://oeis.org/A225953/a225953_2.pdf.
- [7] Wolfdieter Lang, Cycles of reduced Pell forms, general Pell equation and Pell graphs. 2019, https://oeis.org//A324251/a324251.pdf.
- [8] The On-Line Encyclopedia of Integer Sequences TM , published electronically at http://oeis.org. 2010.
- [9] A. Scholz and B. Schoeneberg, *Einführung in die Zahlentheorie*, Sammlung Göschen Band 5131, Walter de Gruyter, 1973.

Keywords: Indefinite quadratic binary forms, Fibonacci sequences, Congruences.

AMS MSC numbers: 11E16, 11B39

 $\begin{array}{lll} \text{OEIS A-numbers:} & \underline{A000032}, \underline{A000045}, \underline{A000217}, \underline{A001906}, \underline{A000285}, \underline{A003646}, \underline{A003658}, \underline{A013655}, \underline{A022095}, \\ \underline{A022096}, \underline{A022097}, \underline{A022098}, \underline{A022099}, \underline{A022100}, \underline{A022101}, \underline{A022102}, \underline{A022103}, \underline{A022104}, \underline{A022105}, \underline{A022113}, \\ \underline{A022115}, \underline{A022116}, \underline{A022117}, \underline{A022121}, \underline{A022131}, \underline{A022122}, \underline{A022123}, \underline{A022124}, \underline{A022125}, \underline{A022126}, \underline{A022130}, \\ \underline{A022132}, \underline{A022133}, \underline{A022134}, \underline{A022136}, \underline{A022138}, \underline{A022139}, \underline{A022140}, \underline{A022141}, \underline{A022142}, \underline{A022388}, \underline{A022389}, \\ \underline{A022390}, \underline{A028387}, \underline{A038566}, \underline{A038872}, \underline{A013655}, \underline{A087048}, \underline{A089270}, \underline{A097657}, \underline{A104449}, \underline{A166025}, \underline{A184959}, \\ \underline{A185691}, \underline{A186620}, \underline{A190995}, \underline{A190996}, \underline{A206419}, \underline{A206420}, \underline{A206422}, \underline{A206423}, \underline{A206564}, \underline{A206607}, \underline{A206608}, \\ \underline{A206609}, \underline{A206610}, \underline{A206611}, \underline{A206612}, \underline{A225953}, \underline{A324251}. \end{array}$

Table 1: Representative parallel primitive forms (rpapfs) for discriminant 5 and N with their t-tuples

	Table 1. Representative parameter primitive forms (reapis) for alsorminant 5 and 1. With their c taples										
n	N	rpapfs	t-tuple	$(\mathbf{x}(\mathbf{N,j;0}),\mathbf{y}(\mathbf{N,j;0}))$							
1	1	$[1,1,-1] = F_p$	no \vec{t}	(1,0)							
2	5	[5, 5, 1]	(3)	(3, -1)							
3	11	[11, 7, 1], [11, 15, 5]	(4), (1, -2)	(4,-1), (-3,-1)							
4	19	[19, 9, 1], [19, 29, 11]	(5), (1, -3)	(5,-1), (-4,-1)							
5	29	[29, 11, 1], [29, 47, 19]	(6), (1, -4)	(6,-1), (-5,-1)							
6	31	[31, 25, 5], [31, 37, 11]	(2,-2), (1,-2)	(-5, -2), (5, 3)							
7	41	[41, 13, 1], [41, 69, 29]	(7), (1, -5)	(7,-1), (-6,-1)							
8	55	[55, 15, 1], [55, 95, 41]	(8), (1, -6)	(8,-1), (-7,-1)							
9	59	[59, 51, 11], [59, 67, 19]	(2,-3), (1,-2,-2,-2)	(-7, -2), (-7, -5)							
10	61	[61, 35, 5], [61, 87, 31]	(3,-2), (1,-3,-2)	(-7, -3), (7, 4)							
11	71	[71, 17, 1], [71, 125, 55]	(9), (1, -7)	(8,-1), (-8,-1)							
12	79	[79, 59, 11], [79, 99, 31]	(2,-2,-2), (1,-2,-3)	(8,5), (8,3)							
13	89	[89, 19, 1], [89, 159, 71]	(10), (1, -8)	(10,-1), (-9,-1)							
14	95		(2,-4), (1,-2,-2,-2,-2)	(-9, -2), (9, 7)							
15	101	[101, 45, 5], [101, 157, 61]		(-9, -4), (9, 5)							
16	109	[109, 21, 1], [109, 197, 89]		(11,-1), (-10,-1)							
17	121	[121, 73, 11], [121, 169, 59]		(-10, -3), (-10, -7)							
18	131		(12), (1, -10)	(12,-1), (-11,-1)							
19	139		(2,-5), (1,-2,-2,-2,-2,-2)	(-11, -2), (-11, -9)							
20	145			(-11, -8), (11, 3)							
21	149	[149, 81, 11], [149, 217, 79]		(11,7), (11,4)							
22	151	[151, 55, 5], [151, 247, 101]		(-11, -5), (11.6)							
23	155	[155, 25, 1], [155, 285, 131]		(13,-1), (-12,-1)							
24	179	[179, 149, 31], [179, 209, 61]		(12,7), (-12,-5)							
25	181		(14), (1, -12)	(14,-1), (-13,-1)							
26	191			(-13, -2), (13, 11)							
27	199	[199, 123, 19], [199, 275, 95]	(3,-4), (1,-3,-2,-2,-2)	(-13, -3), (13, 10)							
28	205	[205, 95, 11], [205, 315, 121]	(4,-3), (1,-4,-2,-2)	(-13 4), (-13 9)							
29	209	[209, 29, 1], [209, 161, 31],	(15) (0 0 2) (1 0 2 0) (1 12)	(15 1) (195) (19 0) (14 1)							
20	011	[209, 257, 79], [209, 389, 181]									
30	211	[211, 65, 5], [211, 357, 151]	(6,-2), (1,-6,-2)	(-13, -6), (13, 7)							

Table 2: AP array of pairs of relatively prime nonnegative integers

n	pairs of relative prime pairs	# N (n)
1	[(1,0)]	1
2	[(2,1)]	1
3	[(3,1),(3,2)]	1
4	[(4,1),(4,3)]	1
5	[(5,1],(5,4)],[(5,2),(5,3)]	2
6	[(6,1),(6,5)]	1
7	[(7,1),(7,6)],[(7,2),(7,5)],[(7,3),(7,4)]	3
8	[(8,1),(8,7)],[(8,3),(8,5)]	2
9	[(9,1),(9,8)],[(9,2),(9,7)],[(9,4),(9,5)]	3
10	[(10,1),(10,9)],[(10,3),(10,7)]	2
11	[(11,1),(11,10)],[(11,2),(11,9)],[(11,3),(11,8)],[(11,4),(11,7)],[(11,5),(11,6)]	5
12	[(12,1),(12,11)],[(12,5),(12,7)]	2
13	[(13,1),(13,12)],[(13,2),(13,11)],[(13,3),(13,10)],[(13,4),(13,9)],[(13,5),(13,8)],[(13,6),(13,7)]	6
14	[(14,1),(14,13)],[(14,3),(14,11)],[(14,5),(14,9)]	3
15	[(15,1),(15,14)],[(15,2),(15,13)],[(15,4),(15,11)],[(15,7),(15,8)]	4
16	[(16,1),(16,15)],[(16,3),(16,13)],[(16,5),(16,11)],[(16,7),(16,9)]	4
17	[(17,1),(17,16)],[(17,2),(17,15)],[(17,3),(17,14)],[(17,4),(17,13)],[(17,5],(17,12)],[(17,6),(17,11)],[(17,7),(17,10)],[(17,8),(17,9)]	8
18	[(18,1),(18,17)],[(18,5],(18,13)],[(18,7),(18,11)]	3
19	[(19,1),(19,18)],[(19,2],(19,17)],[(19,3),(19,16)],[(19,4),(19,15)],[(19,5],(19,14)],[(19,6),(19,13)],[(19,7),(19,12)],[(19,8),(19,11)],[(19,10),(19,12)],	
	[(19,9),(19,10)]	9
20	[(20,1),(20,19)],[(20,3),(20,17)],[(20,7),(20,13)],[(20,9],(20,11)]	4
•••	···	•••

Table 3: Array of representable numbers N of F_p for arrayAP

n	N	# N (n)
1		1
2	[5]	1
3	[11, 11]	1
4	[19, 19]	1
5	[29, 29], [31, 31]	2
6	[41, 41]	1
7	[55, 55], [59, 59], [61, 61]	3
8	[71, 71], [79, 79]	2
9	[89, 89], [95, 95], [101, 101]	3
10	[109, 109], [121, 121]	2
11	[131, 131], [139, 139], [145, 145], [149, 149], [151, 151]	5
12	[155, 155], [179, 179]	2
13	[181, 181], [191, 191], [199, 199], [205, 205], [209, 209], [211, 211]	6
14	[209, 209], [229, 229,], [241, 241]	3
15	[239, 239], [251, 251], [269, 269], [281, 281]	4
16	[271, 271], [295, 295], [311, 311], [319, 319]	4
17	[305, 305], [319, 319], [331, 331], [341, 341], [349, 349], [355, 355], [359, 359], [361, 361]	8
18	[341, 341], [389, 389], [401, 401]	3
19	[379, 379], [395, 395], [409, 409], [421, 421], [431, 431], [439, 439], [445, 445], [449, 449],	
	[451, 451]	9
20	[419, 419], [451, 451], [491, 491], [499, 499]	4
•••	•••	•••

n	N	$\mathbf{pfsols}\ (\mathbf{x},\mathbf{y})$	n	N	$\mathbf{pfsols}\ (\mathbf{x},\mathbf{y})$
1	1	[(1,0)]	31	229	[(14,3),(14,11)]
2	5	[(2,1)]	32	239	[(15,1),(15,14)]
3	11	[(3,1),(3,2)]	33	241	[(14,5),(14,9)]
4	19	[(4,1),(4,3)]	34	251	[(15,2),(15,13)]
5	29	[(5,1],(5,4)]	35	269	[(15,4),(15,11)]
6	31	[(5,2),(5,3)]	36	271	[(16,1),(16,15)]
7	41	[(6,1),(6,5)]	37	281	[(15,7),(15,8)]
8	<u>55</u>	[(7,1),(7,6)]	38	$\underline{295}$	[(16,3),(16,13)]
9	59	[(7,2),(7,5)]	39	305	[(17,1),(17,16)]
10	61	[(7,3),(7,4)]	40	311	[(16,5),(16,11)]
11	71	[(8,1),(8,7)]	41	319	[(16,7),(16,9)],[(17,2),(17,15)]
12	79	[(8,3),(8,5)]	42	331	[(17,3),(17,14)]
13	89	[(9,1),(9,8)]	43	<u>341</u>	[(17,4),(17,13)],[(18,1),(18,17)]
14	<u>95</u>	[(9,2),(9,7)]	44	349	[(17,5),(17,12)]
15	101	[(9,4),(9,5)]	45	355	[(17,6),(17,11)]
16	109	[(10,1),(10,9)]	46	359	[(17,7),(17,10)]
17	$\underline{121}$	[(10,3),(10,7)]	47	<u>361</u>	[(17,8),(17,9)]
18	131	[(11,1),(11,10)]	48	379	[(19,1),(19,18)]
19	139	[(11,2),(11,9)]	49	389	[(18,5),(18,13)]
20	<u>145</u>	[(11,3),(11,8)]	50	<u>395</u>	[(19,2),(19,17)]
21	149	[(11,4),(11,7)]	51	401	[(18,7),(18,11)]
22	151	[(11,5),(11,6)]	52	409	[(19,3),(19,16)]
23	<u>155</u>	[(12,1),(12,11)]	53	419	[(20,1),(20,19)]
24	179	[(12,5),(12,7)]	54	421	[(19,4),(19,15)]
25	181	[(13,1),(13,12)]	55	431	[(19,5),(19,14)]
26	191	[(13,2),(13,11)]	56	439	[(19,6),(19,13)]
27	199	[(13,3),(13,10)]	57	445	[(19,7),(19,12)]
28	205	[(13,4),(13,9)]	58	449	[(19,8),(19,11)],
29	<u>209</u>	[(13,5),(13,8)],[(14,1),(14,13)]	59	451	[(19,9),(19,10)],[(20,3),(20,17)]
30	211	[(13,6),(13,7)]	60	461	[(21,1),(21,20)]

n	N	inputs $(a,b) = (x,y)$	A-numbers
1	1	(1,0)	A00045(n-1)
2	5	(2,1)	A00032(n)
3	11	(3,1), (3,2)	$\underline{A104449}(n), \underline{A013655}(n)$
4	19	(4,1), (4,3)	$\underline{A022095}(n-1), \underline{A022120}(n-1)$
5	29	(5,1), (5,4)	$\underline{A022096}(n-1), \underline{A022130}(n-1)$
6	31	(5,2), (5,3)	$\underline{A022113}(n-1), \underline{A022121}(n-1)$
7	41	(6,1), (6,5)	$\underline{A022097}(n-1), \underline{A022136}(n-1)$
8	<u>55</u>	(7,1), (7,6)	$\underline{A022098}(n-1), \underline{A022388}(n-1)$
9	59	(7,2), (7,5)	$\underline{A022114}(n-1), \underline{A022137}(n-1)$
10	61	(7,3), (7,4)	$\underline{A022122}(n-1), \underline{A022131}(n-1)$
11	71	(8,1), (8,7)	$\underline{A022099}(n-1), \underline{A022389}(n-1)$
12	79	(8,3), (8,5)	$\underline{A022123}(n-1), \underline{A022138}(n-1)$
13	89	(9,1), (9,8)	$\underline{A022100}(n-1), \underline{A022390}(n-1)$
14	<u>95</u>	(9,2), (9,7)	$\underline{\text{A022115}}(n-1), \underline{\text{A190995}}(n)$
15	101	(9,4), (9,5)	$\underline{A022132}(n-1), \underline{A022139}(n-1)$
16	109	(10,1), (10,9)	$\underline{A022101}(n-1), \underline{A184959}(n)$
17	$\underline{121}$	(10,3), (10,7)	$\underline{A022124}(n-1), \underline{A190996}(n)$
18	131	(11,1), (11,10)	$\underline{A022102}(n-1), \underline{A185691}(n-1)$
19	139	(11,2), (11,9)	$\underline{A022116}(n-1), \underline{A206422}(n+1)$
20	145	(11,3), (11,8)	$\underline{A022125}(n-1), \underline{A206420}(n+1)$
21	149	(11,4), (11,7)	$\underline{A022133}(n-1), \underline{A206419}(n+1)$
22	151	(11,5), (11,6)	$\underline{A022140}(n-1), \underline{A166025}(n-1)$
23	155	(12,1), (12,11)	$\underline{A022103}(n-1), \underline{A097657}(n-1)$
24	179	(12,5), (12,7)	$\underline{\text{A022141}}(n-1),\underline{\text{A206423}}(n+1)$
25	181	(13,1), (13,12)	$\underline{A022104}(n-1), \underline{A186620}(n-1)$
26	191	(13,2), (13,11)	$\underline{A022117}(n-1), \underline{A206607}(n+1)$
27	199	(13,3), (13,10)	$\underline{A022126}(n-1), \underline{A206608}(n+1)$
28	<u>205</u>	(13,4), (13,9)	$\underline{A022134}(n-1), \underline{A206609}(n+1)$
29	<u>209</u>	(13,5), (13,8)	$\underline{A022142}(n-1), \underline{A206610}(n+1)$
		(14,1), (14,13)	$\underline{A022105}(n-1), \underline{A206564}(n+1)$
30	211	(13,6), (13,7)	$\underline{A206612}(n+1), \underline{A206611}(n+1)$

 $\begin{array}{c} \text{Table 6} \\ \text{Representative solutions of } x^2+x-1 \equiv 0 \, (\text{mod} \, N(n)), \, \text{for } n \, = \, 1, \, 2, \, ..., \, 60 \\ \end{array}$

n	N	solutions (mod N)	n	N	solutions (mod N)
"	1	solutions (mod 11)	11	1	solutions (mod 14)
1	1	0	31	229	(81, 147)
2	5	2	32	239	(15, 223)
3	11	(3,7)	33	241	(51, 189)
4	19	(4, 14)	34	251	(117, 133)
5	29	(5, 23)	35	269	(71, 197)
6	31	(12, 18)	36	271	(16, 254)
7	41	(6,34)	37	281	(37, 243)
8	<u>55</u>	(7,47)	38	<u>295</u>	(92, 202)
9	59	(25, 33)	39	<u>305</u>	(17, 287)
10	61	(17, 43)	40	311	(58, 252)
11	71	(8,62)	41	<u>319</u>	(139, 179), (150, 168)
12	79	(29,49)	42	331	(116, 214)
13	89	(9,79)	43	341	(18, 322), (80, 260)
14	<u>95</u>	(42, 52)	44	349	(143, 205)
15	101	(22,78)	45	355	(62, 292)
16	109	(10, 98)	46	359	(105, 253)
17	<u>121</u>	(36, 84)	47	<u>361</u>	(42, 318)
18	131	(11, 119)	48	379	(19, 359)
19	139	(63,75)	49	389	(151, 237)
20	145	(52,93)	50	395	(187, 207)
21	149	(40, 108)	51	401	(111, 289)
22	151	(27, 123)	52	409	(129, 279)
23	155	(12, 142)	53	419	(20, 398)
24	179	(74, 104)	54	421	(110, 310)
25	181	(13, 167)	55	431	(90, 340)
26	191	(88, 102)	56	439	(69, 369)
27	199	(61, 137)	57	$\underline{445}$	(187, 257)
28	205	(47, 157)	58	449	(165, 283)
29	209	(14, 194), (80, 128)	59	451	(47,403), (157,293)
30	211	(32, 178)	60	461	(21, 439)

 $\begin{array}{c} \text{Table 7} \\ \text{Representative solutions of } x^2 - 5 \equiv 0 \, (mod \, N(n)), \, for \, \, n \, = \, 1, \, 2, \, ..., \, 60 \end{array}$

n	N	solutions (mod N)	n	N	solutions (mod N)
1	1	0	31	229	(66, 163)
2	5	0	32	239	(31, 208)
3	11	(4,7)	33	241	(103, 138)
4	19	(9,10)	34	251	(16, 235)
5	29	(11, 18)	35	269	(126, 143)
6	31	(6, 25)	36	271	(33, 238)
7	41	(13, 28)	37	281	(75, 206)
8	<u>55</u>	(15, 40)	38	295	(110, 185)
9	59	(8,51)	39	<u>305</u>	(35, 270)
10	61	(26, 35)	40	311	(117, 194)
11	71	(17, 54)	41	319	(18,301), (40,279)
12	79	(20, 59)	42	331	(98, 233)
13	89	(19,70)	43	341	(37,304), (161,180)
14	<u>95</u>	(10, 85)	44	349	(62, 287)
15	101	(45, 56)	45	355	(125, 230)
16	109	(21, 88)	46	359	(148, 211)
17	<u>121</u>	(48,73)	47	<u>361</u>	(85, 276)
18	131	(23, 108)	48	379	(39, 340)
19	139	(12, 127)	49	389	(86, 303)
20	145	(40, 105)	50	395	(20, 375)
21	149	(68, 81)	5 1	401	(178, 223)
22	151	(55, 96)	52	409	(150, 259)
23	155	(25, 130)	53	419	(41, 378)
24	179	(30, 149)	54	421	(200, 221)
25	181	(27, 154)	55	431	(181, 250)
26	191	(14, 177)	56	439	(139, 300)
27	199	(76, 123)	57	$\underline{445}$	(70, 375)
28	<u>205</u>	(95, 110)	58	449	(118, 331)
29	<u>209</u>	(29, 180), (48, 161)	59	451	(95, 356), (136, 315)
30	211	(65, 146)	60	461	(43,418)

n	N	k	$ ilde{\mathbf{x}}$	â	$\widehat{\mathbf{N}}$	n	N	k	$ ilde{\mathbf{x}}$	â	$\widehat{\mathbf{N}}$
1	1	1	3	1	1	31	229	29	163	81	6641
2	5	1	5	2	5	32	239	1	31	15	239
3	11	1	7	3	11	33	241	11	103	51	2651
4	19	1	9	4	19	251	251	55	235	117	13805
5	29	1	11	5	29	35	269	19	143	71	5111
6	31	5	25	12	155	36	271	1	33	16	271
7	41	1	13	6	41	37	281	5	75	37	1405
8	<u>55</u>	1	15	7	55	38	295	29	185	92	8555
9	59	11	51	25	649	39	305	1	35	17	305
10	61	5	35	17	305	40	311	11	117	58	3421
11	71	1	17	8	71	41	<u>319</u>	61	279	139	19459
12	79	11	59	29	869	42	331	41	233	116	13571
13	89	1	19	9	89	43	341	1	37	18	341
14	<u>95</u>	19	85	42	1805	44	349	59	287	143	20591
15	101	5	45	22	505	45	355	11	125	62	3905
16	109	1	21	10	109	46	359	31	211	105	11129
17	$\underline{121}$	11	73	36	1331	47	361	5	85	42	1805
18	131	1	23	11	131	48	379	1	39	19	379
19	139	29	127	63	4031	49	389	59	303	151	22951
20	145	19	105	52	2755	50	<u>395</u>	89	375	187	35155
21	149	11	81	40	1639	51	401	31	223	111	12431
22	151	5	55	27	755	52	409	41	259	129	16769
23	155	1	25	12	155	53	419	1	41	20	419
24	179	31	149	74	5549	54	421	29	221	110	12209
25	181	1	27	13	181	55	431	19	181	90	8189
26	191	41	177	88	7831	56	439	11	139	69	4829
27	199	19	123	61	3791	57	$\underline{445}$	79	375	187	35155
28	205	11	95	47	2255	58	449	61	331	165	27389
29	209	1	29	14	209	59	451	5	95	47	2255
30	211	5	65	32	1055	60	461	1	43	21	461