[go: up one dir, main page]

login
A088375
Decimal expansion of a postulated upper estimate for the complex Grothendieck constant.
4
1, 4, 0, 4, 5, 7, 5, 9, 3, 4, 6, 6, 3, 7, 4, 2, 0, 3, 2, 7, 7, 3, 9, 5, 8, 4, 7, 1, 5, 4, 8, 1, 4, 3, 7, 4, 3, 2, 3, 4, 6, 1, 1, 8, 3, 0, 6, 5, 2, 7, 1, 1, 9, 3, 6, 1, 1, 8, 0, 8, 9, 6, 1, 8, 5, 8, 7, 7, 1, 7, 1, 9, 4, 4, 8, 2, 5, 7, 7, 2, 2, 9, 8, 6, 5, 2, 8, 9, 8, 6, 2, 7, 0, 8, 7, 4, 4, 7, 8, 9, 3, 5
OFFSET
1,2
LINKS
Eric Weisstein's World of Mathematics, Grothendieck's Constant
FORMULA
Equals (sqrt(8*Pi)*Gamma(3/4)^2)/(Pi^2 - 2*Gamma(3/4)^4). - Jan Mangaldan, Nov 23 2020
EXAMPLE
1.404575934663742032773958471548143743234611830652711936118...
MAPLE
Re(evalf(1/(2*EllipticK(I)-EllipticE(I)), 120)); # Vaclav Kotesovec, Apr 22 2015
MATHEMATICA
First[ RealDigits[ N[1/(2*EllipticK[-1] - EllipticE[-1] ), 120], 10, 102]](* Jean-François Alcover, Jun 07 2012, after Eric W. Weisstein *)
RealDigits[(Sqrt[8 Pi] Gamma[3/4]^2)/(Pi^2 - 2 Gamma[3/4]^4), 10, 102][[1]] (* Jan Mangaldan, Nov 23 2020 *)
PROG
(PARI) magm(a, b)=my(eps=10^-(default(realprecision)-5), c); while(abs(a-b)>eps, my(z=sqrt((a-c)*(b-c))); [a, b, c] = [(a+b)/2, c+z, c-z]); (a+b)/2
E(x)=Pi/2/agm(1, sqrt(1-x))*magm(1, 1-x)
K(x)=Pi/2/agm(1, sqrt(1-x))
1/(2*K(-1)-E(-1)) \\ Charles R Greathouse IV, Aug 02 2018
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Eric W. Weisstein, Sep 28 2003
STATUS
approved