OFFSET
3,1
COMMENTS
n=3 is the starting index since exp(x) > x^n for all x>=0 when n=1,2.
This function also cancels out a different set of numbers from the factorial than the primes using the asymptotic behavior of prime(n) and pi(n).
MATHEMATICA
a[n_] := Ceiling[E^-ProductLog[-1, -1/n]]; Table[a[n], {n, 3, 60}]
(* Also, the following code is from another definition of the *)
(* same sequence. *)
(* asymptotic prime like product function*) p[n_]=n!/(2*Product[Floor[i*Log[i]], {i, 2, Floor[n/Log[n]]}])
a0=Table[Floor[p[n]/p[n-1]], {n, 3, 500}];
(* composite like distribution*) Delete[Union[a0], 1];
(* pick of prime like numbers *) c=Table[If[a0[[n]]==1, n+2, 0], {n, 1, digits-3}];
d=Delete[Union[c], 1]
CROSSREFS
KEYWORD
nonn
AUTHOR
Roger L. Bagula, Nov 07 2003
EXTENSIONS
Partially edited Charles R Greathouse IV, Nov 02 2009
Provided new name, and added 2 initial terms, by Shel Kaphan, May 20 2011
Added Mathematica function, by Shel Kaphan, May 23 2011
Reverted to starting at n=3, improved Mathematica code, by Shel Kaphan, May 24 2011
STATUS
approved