[go: up one dir, main page]

login
A087755
Triangle read by rows: Stirling numbers of the first kind (A008275) mod 2.
3
1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1
OFFSET
1,1
COMMENTS
Essentially also parity of Mitrinovic's triangles A049458, A049460, A051339, A051380.
REFERENCES
Das, Sajal K., Joydeep Ghosh, and Narsingh Deo. "Stirling networks: a versatile combinatorial topology for multiprocessor systems." Discrete applied mathematics 37 (1992): 119-146. See p. 122. - N. J. A. Sloane, Nov 20 2014
FORMULA
T(n, k) = A087748(n, k) = A008275(n, k) mod 2 = A047999([n/2], k-[(n+1)/ 2]) = T(n-2, k-2) XOR T(n-2, k-1) with T(1, 1) = T(2, 1) = T(2, 2) = 1; T(2n, k) = T(2n-1, k-1) XOR T(2n-1, k); T(2n+1, k) = T(2n, k-1). - Henry Bottomley, Dec 01 2003
EXAMPLE
Triangle begins:
1
1 1
0 1 1
0 1 0 1
0 0 1 0 1
0 0 1 1 1 1
0 0 0 1 1 1 1
0 0 0 1 0 0 0 1
0 0 0 0 1 0 0 0 1
0 0 0 0 1 1 0 0 1 1
0 0 0 0 0 1 1 0 0 1 1
0 0 0 0 0 1 0 1 0 1 0 1
0 0 0 0 0 0 1 0 1 0 1 0 1
0 0 0 0 0 0 1 1 1 1 1 1 1 1
PROG
(PARI) p = 2; s=14; S1T = matrix(s, s, n, k, if(k==1, (-1)^(n-1)*(n-1)!)); for(n=2, s, for(k=2, n, S1T[n, k]=-(n-1)*S1T[n-1, k]+S1T[n-1, k-1]));
S1TMP = matrix(s, s, n, k, S1T[n, k]%p);
for(n=1, s, for(k=1, n, print1(S1TMP[n, k], " ")); print()) /* Gerald McGarvey, Oct 17 2009 */
CROSSREFS
Sequence in context: A118274 A275737 A080909 * A050072 A267576 A156707
KEYWORD
easy,nonn,tabl
AUTHOR
Philippe Deléham, Oct 02 2003
EXTENSIONS
Edited and extended by Henry Bottomley, Dec 01 2003
STATUS
approved