[go: up one dir, main page]

login
A087358
a(n+1) is the smallest prime > a(n) such that a(n+1) - a(n) == 0 (mod n^n).
1
2, 3, 7, 61, 317, 31567, 218191, 34806997, 101915861, 3201279773, 143201279773, 13838161469101, 85166965055149, 3113918030977679, 36449938507651727, 6166964403839682977, 264421381435773405601, 36662992904434591029389, 430127073657399966783629, 24171162941581163036271377
OFFSET
1,1
LINKS
EXAMPLE
a(4)-a(3) = 61-7 = 54 == 0 (mod 3^3).
MAPLE
A[1]:= 2: A[2]:= 3:
for n from 2 to 25 do
if n::odd then d:= 2*n^n else d:= n^n fi;
for v from A[n] + d by d do
if isprime(v) then A[n+1]:= v; break fi
od od:
seq(A[i], i=1..26); # Robert Israel, Apr 03 2024
CROSSREFS
Sequence in context: A354744 A299923 A337189 * A255357 A270002 A057736
KEYWORD
nonn
AUTHOR
Amarnath Murthy, Sep 08 2003
EXTENSIONS
Corrected and extended by David Wasserman, May 12 2005
Name corrected and more terms from Robert Israel, Apr 03 2024
STATUS
approved