OFFSET
1,1
COMMENTS
The next term in this sequence, a(54) for the prime p=251, is greater than 73000.
Is there a prime p such that p^k - p^(k-1) + 1 is composite for all k > 1? For the related question of Sierpinski numbers (n such that n*2^k+1 is composite for all k ), the answer is yes.
If n=251^k-251^(k-1)+1 is prime then k mod 10 = 1,5,7 or 9 because n mod 3 = 0 iff k is even and n mod 11 = 0 iff k mod 5 = 3. More exponents can be cleared this way. - Bernardo Boncompagni, Oct 23 2005
Note that k cannot be 8, 14, 20, ... (i.e. k == 2 mod 6) because then p^2 - p + 1 divides p^k - p^(k-1) + 1. - T. D. Noe, Aug 31 2006
REFERENCES
See A087126.
MATHEMATICA
lst={}; Do[p=Prime[n]; i=2; While[m=p^i-p^(i-1)+1; !PrimeQ[m], i++ ]; AppendTo[lst, i], {n, 53}]; lst
CROSSREFS
KEYWORD
more,nonn
AUTHOR
T. D. Noe, Aug 18 2003
STATUS
approved