[go: up one dir, main page]

login
A086872
Triangle T(n, k) read by rows; given by [1, 2, 3, 4, 5, 6, ..] DELTA [1, 4, 9, 16, 25, 36, ...] where DELTA is the operator defined in A084938.
7
1, 1, 1, 3, 8, 5, 15, 75, 121, 61, 105, 840, 2478, 3128, 1385, 945, 11025, 51030, 115350, 124921, 50521, 10395, 166320, 1105335, 3859680, 7365633, 7158128, 2702765
OFFSET
0,4
LINKS
FORMULA
Sum( k>=0, T(n, k)*(-1)^k ) = 0; if n>0.
Sum( k>=0, T(n, k)*(-1/2)^k ) = (1/2)^n.
Sum_{k, 0<=k<=n}T(n,k)*x^(n-k) = (-1)^n*A121822(n), (-1)^n*A092812(n), (-1)^n*A054879(n), A009117(n), A033999(n), A000007(n), A000364(n), A000182(n+1) for x = -6, -5, -4, -3, -2, -1, 0, 1 respectively .
EXAMPLE
Triangle begins:
1;
1, 1;
3, 8, 5;
15, 75, 121, 61;
105, 840, 2478, 3128, 1385;
945, 11025, 51030, 115350, 124921, 50521;
10395, 166320, 1105335, 3859680, 7365633, 7158128, 2702765 ; ...
CROSSREFS
Cf. A000182 (row sums), A000364 (first diagonal), A001147 (first column), A084938, A261065 (2nd column).
Sequence in context: A120070 A143753 A121164 * A363421 A323760 A054792
KEYWORD
easy,nonn,tabl
AUTHOR
Philippe Deléham, Aug 20 2003, Aug 17 2007
STATUS
approved