OFFSET
0,3
FORMULA
EXAMPLE
T(1,2)=6: If we let X={1}, Y={2,3}, so Z={1,2,3} and the relevant partial functions f:Z ->Z which do not fix either 2 or 3 are (-,-,-), (1,-,-), (-,3,2), (1,3,2), (2,1,-), (3,-,1). Here a partial function f:Z ->Z is displayed as (f(1),f(2),f(3)).
Array begins:
1, 1, 2, 4, 10, 26, 76, 232, 764, ...
2, 3, 6, 14, 36, 102, 308, 996, 3384, ...
5, 9, 20, 50, 138, 410, 1304, 4380, 15500, ...
14, 29, 70, 188, 548, 1714, 5684, 19880, 72808, ...
PROG
(PARI) T(m, n)={ if(m, if(n>1, T(m, n-1)+m*T(m-1, n-1)+(n-1)*T(m, n-2), A005425(m)+if(n, A005425(m-1)*m)), A000085(n))} \\ M. F. Hasler, Jan 13 2012
for(i=1, 9, for(j=1, i, print1(T(j-1, i-j)", "))) /* list values by antidiagonals */
CROSSREFS
KEYWORD
AUTHOR
James East, Sep 04 2003
EXTENSIONS
Corrected and extended by Philippe Deléham, Dec 31 2011
Values double-checked using the given PARI/GP code by M. F. Hasler, Jan 13 2012
STATUS
approved