[go: up one dir, main page]

login
A085734
Triangle read by rows: T(0,0) = 1, T(n,k) = Sum_{j=max(0,1-k)..n-k} (2^j)*(binomial(k+j,1+j) + binomial(k+j+1,1+j))*T(n-1,k-1+j).
4
1, 2, 3, 16, 30, 15, 272, 588, 420, 105, 7936, 18960, 16380, 6300, 945, 353792, 911328, 893640, 429660, 103950, 10395, 22368256, 61152000, 65825760, 36636600, 11351340, 1891890, 135135, 1903757312, 5464904448, 6327135360, 3918554640, 1427025600, 310269960, 37837800, 2027025
OFFSET
0,2
COMMENTS
A triangle related to Euler numbers and tangent numbers.
T(n,k) = number of down-up permutations on [2n+2] with k+1 left-to-right maxima. For example, T(1,1) counts the following 3 down-up permutations on [4] each with 2 left-to-right maxima: 2143, 3142, 3241. - David Callan, Oct 25 2004
It appears that Sum_{k=0..n} (-1)^(n-k)*T(n,k)*x^(k+1) is the zeta polynomial for the poset of even-sized subsets of [2n+2] ordered by inclusion. - Geoffrey Critzer, Apr 22 2023
LINKS
Tian Han, Sergey Kitaev, and Philip B. Zhang, Distribution of maxima and minima statistics on alternating permutations, Springer numbers, and avoidance of flat POPs, arXiv:2408.12865 [math.CO], 2024. See p. 4.
Alan D. Sokal, The Euler and Springer numbers as moment sequences, arXiv:1804.04498 [math.CO], 2018.
M. S. Tokmachev, Correlations Between Elements and Sequences in a Numerical Prism, Bulletin of the South Ural State University, Ser. Mathematics. Mechanics. Physics, 2019, Vol. 11, No. 1, 24-33.
FORMULA
T(n, k) = A083061(n, k)*2^(n-k). - Philippe Deléham, Feb 27 2005
E.g.f.: sec(x)^y. - Vladeta Jovovic, May 20 2007
T(n,m) = Sum_{k=1..n} (Stirling1(k,m)*Sum_{i=0..k-1} (i-k)^(2*n)* binomial(2*k,i)*(-1)^(n+m+i))/(2^(k-1)*k!). - Vladimir Kruchinin, May 20 2013
EXAMPLE
Triangle begins as:
1;
2, 3;
16, 30, 15;
272, 588, 420, 105; ...
MATHEMATICA
t[n_, k_]:= t[n, k] = Sum[(2^j)*(Binomial[k+j, 1+j] + Binomial[k+j+1, 1+j])*t[n-1, k-1+j], {j, Max[0, 1-k], n-k}]; t[0, 0] = 1; Table[t[n, k], {n, 0, 7}, {k, 0, n}]//Flatten (* Jean-François Alcover, Feb 26 2013 *)
PROG
(Maxima)
T(n, m):=sum((stirling1(k, m)*sum((i-k)^(2*n)*binomial(2*k, i)*(-1)^(n+m+i), i, 0, k-1))/(2^(k-1)*k!), k, 1, n); /* Vladimir Kruchinin, May 20 2013 */
(PARI) {T(n, k) = if(n==0 && k==0, 1, sum(j=max(0, 1-k), n-k, (2^j)*(binomial(k+j, 1+j) + binomial(k+j+1, 1+j))*T(n-1, k-1+j)))};
for(n=0, 5, for(k=0, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Mar 21 2019
(Sage)
@CachedFunction
def T(n, k):
if n==0 and k==0: return 1
else: return sum((2^j)*(binomial(k+j, 1+j) + binomial(k+j+1, 1+j))*T(n-1, k-1+j) for j in (max(0, 1-k)..(n-k)))
[[T(n, k) for k in (0..n)] for n in (0..7)] # G. C. Greubel, Mar 21 2019
CROSSREFS
T(n, 0) = A000182(n), tangent numbers, T(n, n) = A001147(n+1), Sum_{k>=0} T(n, k) = A000364(n+1), Euler numbers.
Cf. A088874.
A subtriangle of A098906.
Sequence in context: A175699 A102882 A359391 * A302837 A034382 A034383
KEYWORD
nonn,tabl,easy
AUTHOR
Philippe Deléham, Jul 20 2003
EXTENSIONS
Edited and extended by Ray Chandler, Nov 23 2003
STATUS
approved