[go: up one dir, main page]

login
A085721
Semiprimes whose prime factors have an equal number of digits in binary representation.
8
4, 6, 9, 25, 35, 49, 121, 143, 169, 289, 323, 361, 391, 437, 493, 527, 529, 551, 589, 667, 713, 841, 899, 961, 1369, 1517, 1591, 1681, 1739, 1763, 1849, 1927, 1961, 2021, 2173, 2183, 2209, 2257, 2279, 2419, 2491, 2501, 2537, 2623, 2773, 2809
OFFSET
1,1
COMMENTS
A138510(A174956(a(n))) <= 2. - Reinhard Zumkeller, Dec 19 2014
LINKS
Dario A. Alpern, Brilliant Numbers.
EXAMPLE
A078972(35) = 527 = 17*31 -> 10001*11111, therefore 527 is a term;
A078972(37) = 533 = 13*41 -> 1101*101001, therefore 533 is not a term;
A001358(1920) = 7169 = 67*107 -> 1000011*1101011: therefore 7169 a term, but not of A078972.
MATHEMATICA
fQ[n_] := Block[{fi = FactorInteger@ n}, Plus @@ Last /@ fi == 2 && IntegerLength[ fi[[1, 1]], 2] == IntegerLength[ fi[[-1, 1]], 2]]; Select[ Range@ 2866, fQ] (* Robert G. Wilson v, Oct 29 2011 *)
Select[Range@ 3000, And[Length@ # == 2, IntegerLength[#1, 2] == IntegerLength[#2, 2] & @@ #] &@ Flatten@ Map[ConstantArray[#1, #2] & @@ # &, FactorInteger@ #] &] (* Michael De Vlieger, Oct 08 2016 *)
PROG
(PARI) is(n)=bigomega(n)==2&&#binary(factor(n)[1, 1])==#binary(n/factor(n)[1, 1]) \\ Charles R Greathouse IV, Nov 08 2011
(Haskell)
a085721 n = a085721_list !! (n-1)
a085721_list = [p*q | (p, q) <- zip a084126_list a084127_list,
a070939 p == a070939 q]
-- Reinhard Zumkeller, Nov 10 2013
CROSSREFS
Cf. A261073, A261074, A261075 (subsequences).
Intersection of A001358 and A266346.
Sequence in context: A246569 A368648 A326063 * A190300 A338378 A081614
KEYWORD
nonn,base,look
AUTHOR
Reinhard Zumkeller, Jul 20 2003
EXTENSIONS
Edited by Charles R Greathouse IV, Aug 02 2010
STATUS
approved