[go: up one dir, main page]

login
A085462
Number of 5-tuples (v1,v2,v3,v4,v5) of nonnegative integers less than n such that v1<=v4, v1<=v5, v2<=v4 and v3<=v4.
4
1, 14, 77, 273, 748, 1729, 3542, 6630, 11571, 19096, 30107, 45695, 67158, 96019, 134044, 183260, 245973, 324786, 422617, 542717, 688688, 864501, 1074514, 1323490, 1616615, 1959516, 2358279, 2819467, 3350138, 3957863, 4650744
OFFSET
1,2
COMMENTS
Number of monotone n-weightings of a certain connected bipartite digraph. A monotone n-(vertex) weighting of a digraph D=(V,E) is a function w: V -> {0,1,..,n-1} such that w(v1)<=w(v2) for every arc (v1,v2) from E.
Dimensions of certain Lie algebra (see Landsberg-Manivel reference for precise definition). - N. J. A. Sloane, Oct 15 2007
LINKS
Goran Kilibarda and Vladeta Jovovic, Antichains of Multisets, J. Integer Seqs., Vol. 7, 2004.
J. M. Landsberg and L. Manivel, The sextonions and E7 1/2, Adv. Math. 201 (2006), 143-179. [Th. 7.1, case a=-2/3]
FORMULA
a(n) = n + 12*binomial(n, 2) + 38*binomial(n, 3) + 45*binomial(n, 4) + 18*binomial(n, 5).
a(n) = n*(n+1)*(2*n+1)*(3*n+1)*(3*n+2)/120.
G.f.: x*(1+x)*(1+7*x+x^2)/(1-x)^6. - Colin Barker, Apr 01 2012
a(n) = sum(i=1..n, sum(j=1..n, i^2 * Min(i,j))). - Enrique PĂ©rez Herrero, Jan 30 2013
MATHEMATICA
Rest[CoefficientList[Series[x*(1 + x)*(1 + 7*x + x^2)/(1 - x)^6, {x, 0, 50}], x]] (* or *) Table[n*(n+1)*(2*n+1)*(3*n+1)*(3*n+2)/120, {n, 0, 50}] (* G. C. Greubel, Oct 07 2017 *)
PROG
(PARI) x='x+O('x^50); Vec(x*(1+x)*(1+7*x+x^2)/(1-x)^6) \\ G. C. Greubel, Oct 07 2017
(Magma) [n*(n+1)*(2*n+1)*(3*n+1)*(3*n+2)/120: n in [0..50]]; // G. C. Greubel, Oct 07 2017
KEYWORD
nonn,easy
AUTHOR
Goran Kilibarda and Vladeta Jovovic, Jul 01 2003
STATUS
approved