[go: up one dir, main page]

login
A085085
Numerator of Sum_{i=2..t} (d(i)/d(i-1)-1), where d(1), ..., d(t) are the divisors of n.
3
0, 1, 2, 2, 4, 5, 6, 3, 4, 7, 10, 10, 12, 9, 14, 4, 16, 4, 18, 17, 16, 13, 22, 25, 8, 15, 6, 19, 28, 68, 30, 5, 20, 19, 42, 14, 36, 21, 22, 51, 40, 31, 42, 23, 92, 25, 46, 5, 12, 6, 26, 25, 52, 11, 46, 79, 28, 31, 58, 157, 60, 33, 146, 6, 48, 35, 66, 29, 32, 218, 70, 131, 72, 39, 22, 31, 88
OFFSET
1,3
LINKS
M. D. Vose, Integers with consecutive divisors in small ratio, J. Number Theory, 19 (1984), 233-238.
EXAMPLE
0, 1, 2, 2, 4, 5/2, 6, 3, 4, 7/2, 10, 10/3, 12, 9/2, 14/3, ...
MAPLE
with(numtheory): f := proc(n) local t1, t2, t3, i; t1 := divisors(n); t3 := convert(t1, list); t2 := 0; for i from 2 to nops(t3) do t2 := t2+(t3[i]/t3[i-1]-1); od; t2; end;
PROG
(PARI) a(n) = {my(d = divisors(n)); numerator(sum(i=2, #d, d[i]/d[i-1] - 1)); } \\ Michel Marcus, Feb 25 2015
CROSSREFS
Cf. A085091.
Sequence in context: A261665 A208096 A049269 * A121600 A126870 A364049
KEYWORD
nonn,frac
AUTHOR
N. J. A. Sloane, Aug 11 2003
STATUS
approved