[go: up one dir, main page]

login
A084974
Primes that show the slow decrease in the larger values of the Andrica function Af(k) = sqrt(p(k+1)) - sqrt(p(k)), where p(k) denotes the k-th prime.
5
7, 113, 1327, 1669, 2477, 2971, 3271, 4297, 4831, 5591, 31397, 34061, 43331, 44293, 58831, 155921, 370261, 492113, 604073, 1357201, 1561919, 2010733, 2127163, 2238823, 4652353, 6034247, 7230331, 8421251, 8917523, 11113933, 20831323
OFFSET
1,1
COMMENTS
a(n) are the primes p(k) such that Af(k) > Af(m) for all m > k. This sequence relies on a heuristic calculation and there is no proof that it is correct.
REFERENCES
R. K. Guy, "Unsolved Problems in Number Theory", Springer-Verlag 1994, A8, p. 21.
P. Ribenboim, "The Little Book of Big Primes", Springer-Verlag 1991, p. 143.
LINKS
Eric Weisstein's World of Mathematics, Andrica's Conjecture.
EXAMPLE
a(3)=1327 because p(217)=1327, p(218)=1361 and Af(217) = sqrt(1361) - sqrt(1327) = 0.463722... is larger than any value of Af(m) for m>217.
CROSSREFS
KEYWORD
nonn
AUTHOR
Harry J. Smith, Jun 16 2003
STATUS
approved