OFFSET
0,2
COMMENTS
Also number of paths from (0,0) to (n,0) using steps U=(1,1), H=(1,0) and D=(1,-1), the U steps come in four colors and the H steps come in five colors. - N-E. Fahssi, Mar 30 2008
Number of lattice paths from (0,0) to (n,n) using steps (1,0), (0,1), and three kinds of steps (1,1). - Joerg Arndt, Jul 01 2011
Sums of squares of coefficients of (1+2*x)^n. - Joerg Arndt, Jul 06 2011
The Hankel transform of this sequence gives A103488. - Philippe Deléham, Dec 02 2007
Partial sums of A085363. - J. M. Bergot, Jun 12 2013
Diagonal of rational functions 1/(1 - x - y - 3*x*y), 1/(1 - x - y*z - 3*x*y*z). - Gheorghe Coserea, Jul 06 2018
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..1000 (terms 0..200 from Vincenzo Librandi)
Tewodros Amdeberhan, In search of multiple expressions for a sequence
Paul Barry and Aoife Hennessy, Generalized Narayana Polynomials, Riordan Arrays, and Lattice Paths, Journal of Integer Sequences, Vol. 15, 2012, #12.4.8.
Hacène Belbachir and Abdelghani Mehdaoui, Recurrence relation associated with the sums of square binomial coefficients, Quaestiones Mathematicae (2021) Vol. 44, Issue 5, 615-624.
Hacène Belbachir, Abdelghani Mehdaoui, and László Szalay, Diagonal Sums in the Pascal Pyramid, II: Applications, J. Int. Seq., Vol. 22 (2019), Article 19.3.5.
Curtis Greene, Posets of shuffles, Journal of Combinatorial Theory, Series A 47.2 (1988): 191-206. See Eq. (30).
Christopher Huffaker, Nathan McCue, Cameron N. Miller, and Kayla S. Miller, The M&M Game: From Morsels to Modern Mathematics, arXiv:1508.06542 [math.HO], 2015.
Greg Morrow, Some probability distributions and integer sequences related to rook paths, Univ. Colorado Springs (2024). See p. 3.
Tony D. Noe, On the Divisibility of Generalized Central Trinomial Coefficients, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.7.
Michael Z. Spivey and Laura L. Steil, The k-Binomial Transforms and the Hankel Transform, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.1.
FORMULA
G.f.: 1 / sqrt(1 - 10*x + 9*x^2).
From Vladeta Jovovic, Aug 20 2003: (Start)
Binomial transform of A059304.
G.f.: Sum_{k >= 0} binomial(2*k,k)*(2*x)^k/(1-x)^(k+1).
E.g.f.: exp(5*x)*BesselI(0, 4*x). (End)
a(n) = Sum_{k = 0..n} Sum_{j = 0..n-k} C(n,j)*C(n-j,k)*C(2*n-2*j,n-j). - Paul Barry, May 19 2006
a(n) = Sum_{k = 0..n} 4^k*C(n,k)^2. - heruneedollar (heruneedollar(AT)gmail.com), Mar 20 2010
a(n) ~ 3^(2*n+1)/(2*sqrt(2*Pi*n)). - Vaclav Kotesovec, Sep 11 2012
D-finite with recurrence: n*a(n) = 5*(2*n-1)*a(n-1) - 9*(n-1)*a(n-2). - R. J. Mathar, Nov 26 2012
a(n) = hypergeom([-n, -n], [1], 4). - Vladimir Reshetnikov, Nov 29 2013
a(n) = hypergeom([-n, 1/2], [1], -8). - Peter Luschny, Apr 26 2016
From Michael Somos, Jun 01 2017: (Start)
a(n) = -3 * 9^n * a(-1-n) for all n in Z.
0 = a(n)*(+81*a(n+1) -135*a(n+2) +18*a(n+3)) +a(n+1)*(-45*a(n+1) +100*a(n+2) -15*a(n+3)) +a(n+2)*(-5*a(n+2) +a(n+3)) for all n in Z. (End)
From Peter Bala, Nov 13 2022: (Start)
1 + x*exp(Sum_{n >= 1} a(n)*x^n/n) = 1 + x + 5*x^2 + 29*x^3 + 185*x^4 + 1257*x^5 + ... is the g.f. of A059231.
The Gauss congruences hold: a(n*p^r) == a(n*p^(r-1)) (mod p^r) for all positive integers n and r and all primes p. (End)
a(n) = 3^n * LegendreP(n, 5/3). - G. C. Greubel, May 30 2023
EXAMPLE
G.f.: 1/sqrt(1-2*b*x+(b^2-4*c)*x^2) yields central coefficients of (1+b*x+c*x^2)^n.
MAPLE
seq(simplify(hypergeom([-n, 1/2], [1], -8)), n=0..19); # Peter Luschny, Apr 26 2016
MATHEMATICA
Table[n! SeriesCoefficient[E^(5 x) BesselI[0, 4 x], {x, 0, n}], {n, 0, 30}] (* Vincenzo Librandi, May 10 2013 *)
Table[Hypergeometric2F1[-n, -n, 1, 4], {n, 0, 30}] (* Vladimir Reshetnikov, Nov 29 2013 *)
CoefficientList[Series[1/Sqrt[1-10x+9x^2], {x, 0, 30}], x] (* Harvey P. Dale, Mar 08 2016 *)
Table[3^n*LegendreP[n, 5/3], {n, 0, 40}] (* G. C. Greubel, May 30 2023 *)
PROG
(PARI) {a(n) = if( n<0, -3 * 9^n * a(-1-n), sum(k=0, n, binomial(n, k)^2 * 4^k))}; /* Michael Somos, Oct 08 2003 */
(PARI) {a(n) = if( n<0, -3 * 9^n * a(-1-n), polcoeff((1 + 5*x + 4*x^2)^n, n))}; /* Michael Somos, Oct 08 2003 */
(PARI) /* as lattice paths: same as in A092566 but use */
steps=[[1, 0], [0, 1], [1, 1], [1, 1], [1, 1]]; /* note the triple [1, 1] */
/* Joerg Arndt, Jul 01 2011 */
(PARI) a(n)={local(v=Vec((1+2*x)^n)); sum(k=1, #v, v[k]^2); } /* Joerg Arndt, Jul 06 2011 */
(PARI) a(n)={local(v=Vec((1+2*I*x)^n)); sum(k=1, #v, real(v[k])^2+imag(v[k])^2); } /* Joerg Arndt, Jul 06 2011 */
(GAP) List([0..20], n->Sum([0..n], k->Binomial(n, k)^2*4^k)); # Muniru A Asiru, Jul 29 2018
(Magma) [3^n*Evaluate(LegendrePolynomial(n), 5/3) : n in [0..40]]; // G. C. Greubel, May 30 2023
(SageMath) [3^n*gen_legendre_P(n, 0, 5/3) for n in range(41)] # G. C. Greubel, May 30 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul D. Hanna, Jun 10 2003
STATUS
approved