[go: up one dir, main page]

login
A084635
Binomial transform of 1,0,1,0,1,1,1,...
5
1, 1, 2, 4, 8, 17, 38, 86, 192, 419, 894, 1872, 3864, 7893, 16006, 32298, 64960, 130375, 261310, 523300, 1047416, 2095801, 4192742, 8386814, 16775168, 33552107, 67106238, 134214776, 268432152, 536867229, 1073737734, 2147479122, 4294962304, 8589929103
OFFSET
0,3
COMMENTS
Without its first term, it is the binomial transform of 1,1,1,1,2,2,2,2,2...
FORMULA
a(n) = 2^n - n*(n^2 - 3*n + 8)/6.
a(n) = 1 + C(n, 2) + Sum_{k=4..n} C(n, k).
O.g.f.: (1-5*x+10*x^2-10*x^3+5*x^4)/((1-x)^4*(1-2*x)). - R. J. Mathar, Apr 02 2008
a(n) = A000225(n) - (n-1) - binomial(n, 3). - G. C. Greubel, Mar 19 2023
MATHEMATICA
Table[2^n -n -Binomial[n, 3], {n, 0, 50}] (* G. C. Greubel, Mar 19 2023 *)
PROG
(Magma) [2^n -n*(n^2-3*n+8)/6: n in [0..50]]; // G. C. Greubel, Mar 19 2023
(SageMath) [2^n -n*(n^2-3*n+8)/6 for n in range(51)] # G. C. Greubel, Mar 19 2023
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Jun 06 2003
STATUS
approved