[go: up one dir, main page]

login
A084447
Number of triangular partitions of n of order 5.
3
1, 5, 15, 39, 90, 189, 375, 707, 1276, 2226, 3768, 6210, 10002, 15780, 24432, 37198, 55772, 82443, 120300, 173445, 247284, 348916, 487555, 675088, 926784, 1262091, 1705644, 2288518, 3049654, 4037611, 5312713, 6949490, 9039627, 11695524, 15054338, 19282807
OFFSET
0,2
LINKS
G. Almkvist, Asymptotic formulas and generalized Dedekind sums, Exper. Math., 7 (No. 4, 1998), pp. 343-359.
FORMULA
G.f.: 1/((1-x)^5*(1-x^3)^4*(1-x^5)^3*(1-x^7)^2*(1-x^9)).
MATHEMATICA
CoefficientList[Series[1/((1 - x)^5 (1 - x^3)^4 (1 - x^5)^3 (1 - x^7)^2 (1 - x^9)), {x, 0, 50}], x] (* Vincenzo Librandi, Aug 29 2016 *)
PROG
(PARI) Vec( 1/((1-x)^5*(1-x^3)^4*(1-x^5)^3*(1-x^7)^2*(1-x^9)) + O(x^50)) \\ Michel Marcus, Dec 08 2014
(Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-x)^5*(1-x^3)^4*(1-x^5)^3*(1-x^7)^2*(1-x^9)))); // Vincenzo Librandi, Aug 29 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jun 27 2003
STATUS
approved