[go: up one dir, main page]

login
A083885
(4^n+2^n+0^n+(-2)^n)/4
2
1, 1, 6, 16, 72, 256, 1056, 4096, 16512, 65536, 262656, 1048576, 4196352, 16777216, 67117056, 268435456, 1073774592, 4294967296, 17180000256, 68719476736, 274878431232, 1099511627776, 4398048608256, 17592186044416, 70368752566272
OFFSET
0,3
COMMENTS
Binomial transform of A083884.
FORMULA
a(n) = (4^n+2^n+0^n+(-2)^n)/4.
G.f.: (4*x^3-2*x^2-3*x+1)/((2*x+1)*(2*x-1)*(4*x-1)).
E.g.f.: exp(4*x)+exp(2*x)+exp(0)+exp(-2*x).
A007814(a(n)) = A022998(n-1). - Ralf Stephan, Feb 14 2004
a(0)=1, a(1)=1, a(2)=6, a(3)=16, a(n)=4*a(n-1)+4*a(n-2)-16*a(n-3) [From Harvey P. Dale, Dec 12 2011]
MATHEMATICA
Join[{1}, Table[(4^n+2^n+(-2)^n)/4, {n, 30}]] (* or *) Join[{1}, LinearRecurrence[ {4, 4, -16}, {1, 6, 16}, 30]] (* Harvey P. Dale, Dec 12 2011 *)
PROG
(Magma) [(4^n+2^n+0^n+(-2)^n)/4: n in [0..20]]; // Vincenzo Librandi, Jun 16 2011
CROSSREFS
Sequence in context: A118640 A277747 A142704 * A350649 A211954 A230942
KEYWORD
easy,nonn
AUTHOR
Paul Barry, May 09 2003
STATUS
approved