[go: up one dir, main page]

login
A083209
Numbers with exactly one subset of their sets of divisors such that the complement has the same sum.
13
6, 12, 20, 28, 56, 70, 88, 104, 176, 208, 272, 304, 368, 464, 496, 550, 650, 736, 836, 928, 992, 1184, 1312, 1376, 1504, 1696, 1888, 1952, 2752, 3008, 3230, 3392, 3770, 3776, 3904, 4030, 4288, 4510, 4544, 4672, 5056, 5170, 5312, 5696, 5830, 6208, 6464
OFFSET
1,1
COMMENTS
A083206(a(n))=1; perfect numbers (A000396) are a subset; problem: are weird numbers (A006037) a subset?
The weird numbers A006037 are not a subset of this sequence. The first missing weird number is A006037(8) = 10430. - Alois P. Heinz, Oct 29 2009
All numbers of the form p*2^k are in this sequence for k>0 and odd primes p between 2^(k+1)/3 and 2^(k+1). - T. D. Noe, Jul 08 2010
LINKS
T. D. Noe, Table of n, a(n) for n=1..407 (terms < 10^6)
Eric Weisstein's World of Mathematics, Perfect Number.
Eric Weisstein's World of Mathematics, Weird Number.
Reinhard Zumkeller, Illustration of initial terms
EXAMPLE
n=20: 2+4+5+10 = 1+20, 20 is a term (A083206(20)=1).
MAPLE
with(numtheory): b:= proc(n, l) option remember; local m, ll, i; m:= nops(l); if n<0 then 0 elif n=0 then 1 elif m=0 or add(i, i=l)<n then 0 else ll:= subsop(m=NULL, l); b(n, ll) +b(n-l[m], ll) fi end: a:= proc(n) option remember; local i, k, l, m, r; for k from `if`(n=1, 1, a(n-1)+1) do l:= sort([divisors(k)[]]); m:= iquo(add(i, i=l), 2, 'r'); if r=0 and b(m, l)=2 then break fi od; k end: seq(a(n), n=1..30); # Alois P. Heinz, Oct 29 2009
MATHEMATICA
b[n_, l_] := b[n, l] = Module[{m, ll, i}, m = Length[l]; Which[n<0, 0, n == 0, 1, m == 0 || Total[l]<n, 0, True, ll = ReplacePart[l, m -> Nothing]; b[n, ll] + b[n - l[[m]], ll]]]; a[n_] := a[n] = Module[{i, k, l, m, r}, For[k = If[n == 1, 1, a[n-1]+1], True, k++, l = Divisors[k]; {m, r} = QuotientRemainder[Total[l], 2]; If[r==0 && b[m, l]==2, Break[]]]; k]; Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 1, 50}] (* Jean-François Alcover, Jan 31 2017, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Apr 22 2003
EXTENSIONS
More terms from Alois P. Heinz, Oct 29 2009
STATUS
approved