[go: up one dir, main page]

login
A082870
Tribonacci array.
4
1, 1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 4, 6, 2, 1, 5, 10, 7, 1, 1, 6, 15, 16, 6, 1, 7, 21, 30, 19, 3, 1, 8, 28, 50, 45, 16, 1, 1, 9, 36, 77, 90, 51, 10, 1, 10, 45, 112, 161, 126, 45, 4, 1, 11, 55, 156, 266, 266, 141, 30, 1, 1, 12, 66, 210, 414, 504, 357, 126, 15, 1, 13, 78, 275, 615, 882
OFFSET
0,6
COMMENTS
Row sums are tribonacci numbers.
From Gary W. Adamson, Nov 15 2016: (Start)
With an alternative format:
1, 0, 0, 0, 0, 0, 0, ...
1, 1, 1, 0, 0, 0, 0, ...
1, 2, 3, 2, 1, 0, 0, ...
1, 3, 6, 7, 6, 3, 1, ...
... (where the k-th row is (1 + x + x^2)^k), let q(x) = (r(x) * r(x^3) * r(x^9) * r(x^27) * ...). Then q(x) is the binomial sequence beginning (1, k, ...). Example: (1, 3, 6, 10, ...) = q(x) with r(x) = (1, 3, 6, 7, 3, 1, 0, 0, 0). (End)
REFERENCES
Thomas Koshy, <"Fibonacci and Lucas Numbers with Applications">, Wiley, 2001; Chapter 47: Tribonacci Polynomials: ("In 1973, V.E. Hoggat, Jr. and M. Bicknell generalized Fibonacci polynomials to Tribonacci polynomials tx(x)"); Table 47.1, page 534: "Tribonacci Array".
LINKS
FORMULA
G.f.: x/(1 - x - x^2*y - x^3*y^2). - Vladeta Jovovic, May 30 2003
EXAMPLE
Triangle begins:
1,
1,
1, 1,
1, 2, 1,
1, 3, 3,
1, 4, 6, 2,
1, 5, 10, 7, 1,
1, 6, 15, 16, 6,
PROG
(Haskell)
a082870 n k = a082870_tabf !! n !! k
a082870_row n = a082870_tabf !! n
a082870_tabf = map (takeWhile (> 0)) a082601_tabl
-- Reinhard Zumkeller, Apr 13 2014
CROSSREFS
A082601 is a better version. Cf. A000073, A078802.
Cf. A004396 (row lengths).
Sequence in context: A124054 A299208 A334187 * A026009 A137171 A010356
KEYWORD
nonn,tabf
AUTHOR
Gary W. Adamson, May 24 2003
EXTENSIONS
More terms from Vladeta Jovovic, May 30 2003
STATUS
approved