[go: up one dir, main page]

login
A082024
Number of partitions of n into 3 parts which have common divisors.
15
0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 2, 0, 4, 0, 4, 3, 5, 0, 9, 0, 9, 5, 10, 0, 16, 2, 14, 7, 17, 0, 27, 0, 21, 11, 24, 6, 36, 0, 30, 15, 37, 0, 51, 0, 41, 25, 44, 0, 64, 4, 58, 25, 57, 0, 81, 12, 69, 31, 70, 0, 108, 0, 80, 43, 85, 16, 123, 0, 97, 45, 120, 0, 144, 0, 114, 69, 121, 14, 171, 0
OFFSET
0,11
COMMENTS
a(p) = 0 if p is a prime. Can anyone suggest a formula?
See example for a method to find a(n). - David A. Corneth, Aug 24 2020
LINKS
David A. Corneth, Table of n, a(n) for n = 0..9999 (first 5001 terms from Alois P. Heinz)
EXAMPLE
a(14) = 4 and the partitions are (10,2,2), (8,4,2),(6,6,2) and (6,4,4).
a(13) = 0 as for all r + s + t = 13,r > 0, s > 0,t> 0 gcd(r,s,t) = 1.
From David A. Corneth, Aug 24 2020: (Start)
a(100) = 233. The squarefree part of 100 is 10. The divisors of 10 are 1, 2, 5 and 10.
These are the possible squarefree divisors of parts. As parts must not be coprime, we exclude 1, leaving 2, 5 and 10. We then compute 100/k for each of these numbers.
This gives 50, 20 and 10 respectively. Now a(100) is found by adding -(round(50^2/12)*(-1)^omega(2) + round(20^2/12)*(-1)^omega(5) + round(10^2/12)*(-1)^omega(10)) = -(-208 - 33 + 8) = 233 where omega(m) is the number of distinct divisors of m (Cf. A001221) and round(m^2/12) is the number of partitions of m into 3 parts (Cf. A069905) (End)
MATHEMATICA
a[n_] := Length[Select[Flatten[Table[{a, b, n-a-b}, {a, 1, Floor[n/3]}, {b, a, Floor[(n-a)/2]}], 1], GCD@@#1>1&]]
PROG
(PARI) a(n) = if(n==0, return(0)); cn = factorback(factor(n)[, 1]); d = divisors(cn); -sum(i = 2, #d, round((n/d[i])^2/12) * (-1)^omega(d[i])) \\ David A. Corneth, Aug 24 2020
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Amarnath Murthy, Apr 07 2003
EXTENSIONS
More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 20 2003 and Dean Hickerson, Apr 22 2003
STATUS
approved