Solution to Problem 11901 in *The American Mathematical Monthly*

Jerrold W. Grossman and Serge Kruk Department of Mathematics and Statistics Oakland University Rochester, MI 48309 grossman@oakland.edu, 248-370-3443 August 21, 2016

A mapping f from [n] to [n] can be described by the vector $[f(1), f(2), \ldots, f[n]$. We claim that such a vector is a (possibly empty) composition of \uparrow and \downarrow if and only if it is constant or else of the form

$$[a, a, \dots, a, a+1, a+2, \dots, b, b, \dots, b]$$
(*)

with r appearances of a at the beginning and s appearances of b at the end, where $1 \le a < b \le n$ and r + (b - a - 1) + s = n. The constant vector $[c, c, c, \ldots, c]$ can be reached from the identity function $[1, 2, 3, \ldots, n]$ by n - 1 applications of \downarrow followed by c - 1 applications of \uparrow . The vector (*) can be reached from $[1, 2, 3, \ldots, n]$ by r - 1 applications of \downarrow to get a vector starting with r 1s, followed by r + s - 2 applications of \uparrow to get a vector ending with s ns, followed by n - b applications of \downarrow . Conversely, it is clear that applying \uparrow or \downarrow to a vector of given form (or constant) leaves it in this form (or constant).

It remains to count the number of vectors of form (*). For a given a and b, there are n - b + a choices for r, and each such choice determines s. Taking into account the constant vectors as well gives the answer:

$$n + \sum_{a=1}^{n-1} \sum_{b=a+1}^{n} (n-b+a) = \frac{2n^3 - 3n^2 + 7}{6}.$$

These values (1, 3, 8, 18, 35, 61, 98, 148, 213, ...) form sequence A081489 in Neil Sloane's On-line Encyclopedia of Integer Sequences (oeis.org).