[go: up one dir, main page]

login
A081003
a(n) = Fibonacci(4n+1) + 1, or Fibonacci(2n+1)*Lucas(2n).
1
2, 6, 35, 234, 1598, 10947, 75026, 514230, 3524579, 24157818, 165580142, 1134903171, 7778742050, 53316291174, 365435296163, 2504730781962, 17167680177566, 117669030460995, 806515533049394, 5527939700884758, 37889062373143907, 259695496911122586
OFFSET
0,1
REFERENCES
Hugh C. Williams, Edouard Lucas and Primality Testing, John Wiley and Sons, 1998, p. 75
FORMULA
a(n) = 8*a(n-1) - 8*a(n-2) + a(n-3).
G.f.: (2-10*x+3*x^2)/((1-x)*(1-7*x+x^2)). - Colin Barker, Jun 24 2012
MAPLE
with(combinat): for n from 0 to 30 do printf(`%d, `, fibonacci(4*n+1)+1) od: # James A. Sellers, Mar 03 2003
MATHEMATICA
Fibonacci[4*Range[0, 30]+1]+1 (* or *) LinearRecurrence[{8, -8, 1}, {2, 6, 35}, 30] (* Harvey P. Dale, Jul 20 2011 *)
PROG
(Magma) [Fibonacci(4*n+1) +1: n in [0..30]]; // Vincenzo Librandi, Apr 15 2011
(PARI) vector(30, n, n--; fibonacci(4*n+1)+1) \\ G. C. Greubel, Jul 15 2019
(Sage) [fibonacci(4*n+1)+1 for n in (0..30)] # G. C. Greubel, Jul 15 2019
(GAP) List([0..30], n-> Fibonacci(4*n+1)+1); # G. C. Greubel, Jul 15 2019
CROSSREFS
Cf. A000045 (Fibonacci numbers), A000032 (Lucas numbers).
Sequence in context: A135965 A018983 A279736 * A038181 A305275 A326090
KEYWORD
nonn,easy
AUTHOR
R. K. Guy, Mar 01 2003
EXTENSIONS
More terms from James A. Sellers, Mar 03 2003
STATUS
approved