[go: up one dir, main page]

login
A080419
Triangle of generalized Chebyshev coefficients.
6
1, 4, 1, 15, 7, 1, 54, 36, 10, 1, 189, 162, 66, 13, 1, 648, 675, 360, 105, 16, 1, 2187, 2673, 1755, 675, 153, 19, 1, 7290, 10206, 7938, 3780, 1134, 210, 22, 1, 24057, 37908, 34020, 19278, 7182, 1764, 276, 25, 1, 78732, 137781, 139968, 91854, 40824, 12474, 2592
OFFSET
1,2
COMMENTS
Second binomial transform of 'pruned' Pascal triangle Binomial(i+1,j+1), (i,j>=0).
FORMULA
T(n,1) = A006234(n+2), T(n,n) = 1, T(n,k) = T(n-1,k-1) + 3*T(n-1,k), T(n,k)=0 for k>n. - corrected by Michel Marcus, Apr 15 2018
As a square array, T1(n, k)= (n+3k)3^n Product{j=1..(k-1), n+j}/(3k(k-1)!) (k>=1, n>=0).
EXAMPLE
Rows are:
{1},
{4,1},
{15,7,1},
{54,36,10,1},
{189,162,66,13,1},
...
For example, 10 = 7+3*1, 66 = 36+3*10.
PROG
(PARI) T(n, k) = if (k==1, (n+2)*3^(n-2), if (k==n, 1, if (k < n, T(n-1, k-1) + 3*T(n-1, k), 0)));
tabl(nn) = for (n=1, nn, for (k=1, n, print1(T(n, k), ", ")); print); \\ Michel Marcus, Apr 15 2018
CROSSREFS
Columns include A006234, A080420, A080421, A080422, A080423.
Sequence in context: A319039 A107873 A156290 * A095307 A159764 A124029
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Feb 19 2003
STATUS
approved