OFFSET
1,2
COMMENTS
Second binomial transform of 'pruned' Pascal triangle Binomial(i+1,j+1), (i,j>=0).
FORMULA
T(n,1) = A006234(n+2), T(n,n) = 1, T(n,k) = T(n-1,k-1) + 3*T(n-1,k), T(n,k)=0 for k>n. - corrected by Michel Marcus, Apr 15 2018
As a square array, T1(n, k)= (n+3k)3^n Product{j=1..(k-1), n+j}/(3k(k-1)!) (k>=1, n>=0).
EXAMPLE
Rows are:
{1},
{4,1},
{15,7,1},
{54,36,10,1},
{189,162,66,13,1},
...
For example, 10 = 7+3*1, 66 = 36+3*10.
PROG
(PARI) T(n, k) = if (k==1, (n+2)*3^(n-2), if (k==n, 1, if (k < n, T(n-1, k-1) + 3*T(n-1, k), 0)));
tabl(nn) = for (n=1, nn, for (k=1, n, print1(T(n, k), ", ")); print); \\ Michel Marcus, Apr 15 2018
CROSSREFS
KEYWORD
AUTHOR
Paul Barry, Feb 19 2003
STATUS
approved