[go: up one dir, main page]

login
A079750
Operation count to create all permutations of n distinct elements using the "streamlined" version of Algorithm L (lexicographic permutation generation) from Knuth's The Art of Computer Programming, Vol. 4, chapter 7.2.1.2. Sequence gives number of comparisons required to find j in step L2.2'.
11
0, 4, 25, 156, 1099, 8800, 79209, 792100, 8713111, 104557344, 1359245485, 19029436804, 285441552075, 4567064833216, 77640102164689, 1397521838964420, 26552914940323999, 531058298806480000, 11152224274936080021
OFFSET
3,2
COMMENTS
The asymptotic value for large n is 0.21828...*n! See also comment for A079884
REFERENCES
See under A079884
FORMULA
a(3)=0, a(n) = n * a(n-1) + n for n >= 4.
a(n) = Sum_{j=3..n} (n+1)!/j!. - Zerinvary Lajos, Oct 20 2006
For n >= 3, a(n) = floor((e - 5/2)*n! - 1/2). - Benoit Cloitre, Aug 03 2007
MAPLE
a:=n->sum((n+1)!/j!, j=3..n): seq(a(n), n=2..20); # Zerinvary Lajos, Oct 20 2006
MATHEMATICA
a[3] = 0; a[n_] := n*a[n - 1] + n; Table[a[n], {n, 3, 21}]
PROG
(Fortran) c Program available at link.
KEYWORD
easy,nonn
AUTHOR
Hugo Pfoertner, Jan 14 2003
EXTENSIONS
Edited and extended by Robert G. Wilson v, Jan 22 2003
STATUS
approved