[go: up one dir, main page]

login
A079550
Array T(m,n) = phi(m^2)*phi(n^2) - phi(m*n)^2 (m,n >= 1), read by antidiagonals.
3
0, 1, 1, 2, 0, 2, 4, 8, 8, 4, 4, 0, 0, 0, 4, 8, 24, 32, 32, 24, 8, 6, 8, 56, 0, 56, 8, 6, 16, 48, 36, 96, 96, 36, 48, 16, 18, 0, 108, 32, 0, 32, 108, 0, 18, 24, 72, 128, 192, 176, 176, 192, 128, 72, 24, 10, 16, 0, 0, 264, 0, 264, 0, 0, 16, 10, 32, 120, 176, 288, 384, 360, 360, 384, 288
OFFSET
1,4
COMMENTS
It is known that phi(m^2)*phi(n^2) >= phi(m*n)^2.
REFERENCES
József Sándor, Dragoslav S. Mitrinovic, and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter I, p. 9, section I.2.2.
EXAMPLE
Array begins:
m\n | 1 2 3 4 5 6 ...
----+--------------------------------
1 | 0 1 2 4 4 8 ...
2 | 1 0 8 0 24 8 ...
3 | 2 8 0 32 56 36 ...
4 | 4 0 32 0 96 32 ...
5 | 4 24 56 96 0 176 ...
6 | 8 8 36 32 176 0 ...
...
MATHEMATICA
T[m_, n_] := EulerPhi[m^2] * EulerPhi[n^2] - EulerPhi[m*n]^2; Table[T[m, n-m+1], {n, 1, 12}, {m, 1, n}] // Flatten (* Amiram Eldar, Apr 23 2024 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Jan 24 2003
STATUS
approved