[go: up one dir, main page]

login
A079351
a(1)=3; for n > 1, a(n) is the smallest integer greater than a(n-1) consistent with the condition "n is in the sequence if and only if a(n) is congruent to 0 (mod 5)".
2
3, 4, 5, 10, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115
OFFSET
1,1
COMMENTS
Equivalently: unique monotonic sequence satisfying a(1)=3, a(a(n))=5n.
LINKS
B. Cloitre, N. J. A. Sloane and M. J. Vandermast, Numerical analogues of Aronson's sequence, J. Integer Seqs., Vol. 6 (2003), #03.2.2.
B. Cloitre, N. J. A. Sloane and M. J. Vandermast, Numerical analogues of Aronson's sequence (math.NT/0305308)
FORMULA
a(3*5^k + j) = 5^(k+1) + 3j + 2|j|, k >= 0, -2*5^k <= j < 2*5^k.
CROSSREFS
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Feb 23 2003
EXTENSIONS
More terms from Matthew Vandermast, Mar 13 2003
STATUS
approved