[go: up one dir, main page]

login
A079336
A repetition-resistant sequence.
5
0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1
OFFSET
1,1
COMMENTS
Unsolved problem: is every finite binary sequence a segment of a?
LINKS
Clark Kimberling, Problem 2289, Crux Mathematicorum 23 (1997) 501.
FORMULA
a(n+1)=0 if and only if (a(1), a(2), ..., a(n), 1), but not (a(1), a(2), ..., a(n), 0), has greater length of longest repeated segment than (a(1), a(2), ..., a(n)) has.
EXAMPLE
a(8)=1 because (0,1,1,0,0,1,0,0) has repeated segment (1,0,0) of length 3, whereas (0,1,1,0,0,1,0,1) has no repeated segment of length 3.
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jan 03 2003
STATUS
approved