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ON THE CELLULAR AUTOMATON OF ULAM AND WARBURTON

Fa 3%
1319

David Singmaster
87 Rodenhurst Road, London, SW4 8AF, UK

1. INTRODUCTION.

Mike Warburton's 'One-edge connections' [3] is an example of a cellular automaton or a
cell growth pattern. [t seems to have been first considered by Stanislaw Ulam in one of the
original papers in the field [2].

We consider the square lattice as an infinite chessboard of cells, with each cell having as
neighbours the four cells which share an edge with it. In generation 0, the cell at (0, 0) is
transformed. In each succeeding generation, the cells which share one edge with already
transformed cells are transformed. One can think of the situation as an infinite array of cells
and the transformation being that they are infected, and perhaps die. Or we can think of the
plane as a nutrient surface and the cells are becoming alive and propagating. The latter
interpretation is more common and agrees with the idea of generation as used in Conway's
Life, etc.

We first simplify by noting that the pattern has the symmetry of the square and so we
need only look at one quadrant. It is convenient to take the fourth quadrant. Figure 1 shows
part of the fourth quadrant with cells labelled with the generation in which they are born. Up
through the sixth generation, the pattern coincides with the pattern of odd binomial
coefficients, and would continue to do so|iffwe required that life had to spread outward. After
seeing Warburton's note, 1 did somc analysis of the latter pattern and sent it to Tony Forbes
since it is a well-known pattern, related to the Tower of Hanoi, the fractal known as :
Sierpiriski's Gasket and pathological curves —see [1]. However my friend Chris Base recently

asked about a pattern which had arisen in a school investigation and this was the Ulam-
Warburton pattern and she poigle.d out that in the 7th generation, there is an inward growth,
and this gets more important in higher generations. So here I do the analysis for the Ulam-
Warburton pattern and determine the number of cells born in each generation.

2. THE NUMBER IN EACH GENERATION.

Let A(i) be the number of cells born in generation i. Figure 2 lists the values of A(i),
up through i=63,
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Looking at Figure 1, we see that the growth from 2° to 2*!-1 can be viewed as three
triangles, as shown in Figure 3. Triangles B and C are identical to triangle A advanced by 2.
To see what is going on in triangle D, we need to subdivide as in Figure 4. Because the
growth from point P = (0, 2) is into virgin territory up until generation 2%+1-1, the growth
is symmetric with respect te the horizontal through P. So triangle D1 is the reflection of
triangle C2. However, these triangles share the common horizontal through P. So the number
of cells of a given generation in the interior of D1 is one less than the number counted in C2.
Also by symmetry, C2 is the reflection of C1, with a slight counting problem at the point P.
Putting together all the triangles, we see that o

(1) A(2%) = 2AG3) +2AAG/2-1] = 3A3G) -2, for i=1,.., 2-1.

When i=0, we have A(2") =2, except A(0)=1.

Since A(i) is always even (exceptat i=0), Letus set B(i) = A(1)/2; B(0) = 1. Then

we have

(2) B(2%+i) = 3B(i) - 1, except B(2?) = 1. L
Looking at B ""“ E grg

B(ll) =3B3)-1=33B(1)-1)-1=9-3-1;
B(12) = 3B4) -1 =3-1;
B(13) = 3B(5)-1 = 33B(1)-1)-1 =9-3-1;
B(14) = 3B(6)-1 = 33B(2)-1)-1 =9-3- L
B(15) = 3B(7M) -1 = 33B(3)-1)-1 =33GBB(1)-1)-1)-1=27-9-3-1;
we see that the expressions depend just on the number, d, of ones in the binary representation
of i, being 3%'-3%42- - 1. The tail of this is just [3*! - 1)/2, so we have a total of
B() =[3*! + 1)/2. Doubling this gives us
(3) A() = 3*!'+1, in agreement with the values in Figure 2. This holds even when
d=1, ie. i=2" but A(0)=1 is still exceptional.
I cannot yet see any simple way to describe the cells born in the i-th generation (or in

all generations), nor how to determine for a given cell whether it is ever bom nor in which
generation. | have a rather complicated method for the latter questions, but I will postpone this
until the end of this note. Such descriptions depend on the binary representation in some way.

3. THE NUMBER IN THE FIRST 2¥ GENERATIONS.
L

Now let C = L_'™' A(i) be the total number born in generations 0, 1, ..., 2°-1. Hqcl 2 Rc\
Wehave C,=1; C,=3; C,=9; C,=29; C,=101; C,=373; C =1429;.... Either by
counting as done to find equation (1), or by adding up equation (1) from 2°+1 to 21 -1,
and using A(0)=1, A(2*) =2, we find

4 C,,=4C -(2°-1), for n>0.

This is not a common type of recurrence because of the non-homogeneous terms 2° - 1.
After some fiddling based on the idea that the solution should include terms like the non-
homogeneous part, I realised I could eliminate this part by considering C, = D, +a2"+b.
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This yields D, +a2™' +b = 4D +4a2" +4b - 2° +'1. Setting b =-1/3 makes the
constant part cancel out, and setting a = 1 makes the 2* part cancel out. We are then left
with D_,, =4D,_, whose solution is obviously D = a4, Hence C =ad"+2" - 1/3,
Using C, =3, we find o= 1/3, so

(5) C,=(4"-1)3+2n

The total number of cells in levels O through 2°-1 is 142+ ..+2" = 2%(2%+1)/2
= t(27), the 2°-th triangular number. Hence the density of live cells up through 2°-1 is
C/u2%) = 2/3 - 1/3:2*' + 1/(2°+1), which is asymptotic to 2/3.

To relate to Mike Warburton's expression, we let E_ be the number in his pattern for
levels O through 2°- 1. We have E = 1; E, =5; E,=21; E,=85; E,=341;... Note
that Warburton includes the level 27, which adds fourto E_. Since the whole figure is four
quadrants, with some overlap along the axes, we find E, = 4C_-3 - 4(2°-1), and using
equation (5), we have

(6) E = (4™ -1)/3.

Adding four and slightly rearranging gives E_+4 = 4-4%3 + 11/3, which is Warburton's
expression.

Surprisingly, neither A(i) nor B(i) appear in Sloane's On-Line Encyclopedia of
Integer Sequences (www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eismum.cgi)
and E_ appears as in equation (6) but only in quite different contexts.

4. CONCLUDING REMARKS.

Let me now describe my somewhat complicated process of determining whether and
when a given cell becomes alive. Basically we use the recursive observations about Figures 3
and 4 to reduce the coordinates. Let a cell have coordinates (i, j) where j is taken positive in
the downward direction. Let G(i, j) be the generation number in which cell (i, ) is born,
Since Figure 1 is symmetric with respect to its diagonal, i.e. G(i, j) =G(j, 1), we can assume
i=j and we need only look at the lower part of Figure 1. . :
The growth from generation 2* to generation 2*' - 1 all lies in the triangles B, C, D
of Figure 3,i.e. where 22<ji+j=<2™ -1,
If j=2° we are in triangle C and we have ¢
(M GG.j) = 2*+ GG, j-2v.
Butif i<j<2" then we are interior to triangle D1 and reflection in the horizontal
through P gives G(i, j) = G(i, 2°*'-j). Use of (7) then gives us
8 G(,j) = 2+ G(q, 2*4j).
Rotating triangle D1 into triangle C1 gives us G(i, j) = G(2°-j, 2"+i) and use of (7) gives us
9 GG,j) = 22 +G(2°j, 1),
which is a symmetric form of (8). However, when 1=j=2"', both transformations bring us
back to the same point we started with. If i=j =0, we are at the end of our process, but if
i=j>0, our pointis never born. Other general rules such as G(0, j) =j and

sl A0 L
:h_m. =
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G, 2"-1-i) =2° - 1 help shorten any calculation. One can describe these rules in terms of the
binary expansions of i and j, but the dichotomy of the rules and the use of 2s complement in
(8) or (9) makes it quite unclear what the overall result of the process will be.

As a final remark, observe that the pattern of unborn cells is the same fractal as the
pattern of born cells, but rotated by 45° and shrunk by a factor of V2.
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FIGURE 2.
i A(i) i A(i) i A(i) i A(i)
0 1 16, 2 32 2 48 4
1 2 17 4 33 4 49 10
2 2 18 4 34 ° 50 10
3 4 19 10 35 10 51 28
4 2 20 4 36 1 52 10
5 4 21 10 37 10 53 28
6 4 22 10 38 140 54 28
4 10 23 28 39 28 55 82
8 2 24 L 40) 4 56 10
9 4 25 10 41 10 57 28
10 4 26 10 42 10 58 28
11 10 27 28 43 28 59 82
12 4 28 10 44 10 60 28
13 10 29 28 45 28 61 82
14 10 30 28 46 28 62 82
15 28 31 82 47 82 63 242
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