[go: up one dir, main page]

login
A079201
Number of isomorphism classes of associative commutative closed binary operations on a set of order n, listed by class size.
8
1, 1, 0, 3, 0, 0, 3, 9, 0, 0, 0, 3, 0, 0, 16, 39, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 15, 0, 4, 0, 103, 201, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 6, 0, 0, 4, 91, 0, 55, 0, 715, 1258, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12
OFFSET
0,4
COMMENTS
Number of elements per row: 1,1,2,4,8,16,30,... (given by A027423, number of positive divisors of n!).
FORMULA
A079194(n,k) + A079197(n,k) + A079200(n,k) + T(n,k) = A079171(n,k).
T(n, A027423(n)) = A058105(n).
A023815(n) = Sum_{k>=1} T(n,k)*A079210(n,k).
EXAMPLE
Triangle T(n,k) begins:
1;
1;
0, 3;
0, 0, 3, 9;
0, 0, 0, 3, 0, 0, 16, 39;
0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 15, 0, 4, 0, 103, 201;
CROSSREFS
Row sums are A001426.
Sequence in context: A151665 A171793 A079209 * A279368 A021773 A244126
KEYWORD
nonn,tabf
AUTHOR
Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003
EXTENSIONS
a(0)=1 prepended and terms a(16) and beyond from Andrew Howroyd, Jan 26 2022
STATUS
approved