OFFSET
0,1
COMMENTS
FORMULA
a(n) = prime(floor(n/3+1))*(prime(floor(n/3+1)) + (n mod 3))
EXAMPLE
56 is in the sequence because floor(sqrt(56)) = 7 is prime and 7 divides 56.
MATHEMATICA
Flatten[ #(#+{0, 1, 2})&/@Prime/@Range[20]]
a[n_] := (p=Prime[Floor[n/3+1]])(p+Mod[n, 3])
dpipQ[n_]:=Module[{c=Floor[Sqrt[n]]}, PrimeQ[c]&&Divisible[n, c]]; Select[Range[ 4000], dpipQ] (* Harvey P. Dale, Mar 10 2013 *)
PROG
(PARI) ipsqrt(n) = { sr= 0; for(x=1, n, v = floor(sqrt(x)); if(isprime(v) && x%v == 0, print1(x" "); sr+=1.0/x; ); ); print(); print(sr); } \\ numbers divisible by prime integer parts of their square roots.
CROSSREFS
KEYWORD
nonn
AUTHOR
Cino Hilliard, Dec 26 2002
STATUS
approved