[go: up one dir, main page]

login
A079012
Least prime p introducing prime-difference pattern {d, 2*d, 4*d}, where d = 2*n, i.e., {p, p+2*n, p+6*n, p+14*n} are consecutive primes.
4
1997, 2239, 8311, 989663, 192667, 2462087, 11430059, 18365701, 55143493, 61885319, 208711627, 60411709, 654143801, 946120183, 725464469, 4371890027, 5922189979, 2202500371, 12079458623, 6855676621, 22629404927, 31255408649
OFFSET
1,1
EXAMPLE
For n=6, d = 2*n = 12, d-pattern = {12, 24, 48}, a(6) = 2462807, first corresponding prime 4-tuplet is {2462087, 2462099, 2462123, 2462171}.
CROSSREFS
Sequence in context: A233935 A250380 A372247 * A063472 A063054 A296826
KEYWORD
nonn,more
AUTHOR
Labos Elemer, Jan 21 2003
EXTENSIONS
a(16)-a(22) from Jinyuan Wang, Feb 11 2021
STATUS
approved