[go: up one dir, main page]

login
A078646
Number of representations of n as a sum of two primes that are congruent modulo 3.
2
0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 2, 0, 0, 1, 2, 0, 2, 0, 0, 1, 1, 0, 3, 0, 0, 0, 2, 0, 2, 0, 0, 1, 2, 0, 3, 0, 0, 1, 3, 0, 3, 0, 0, 1, 2, 0, 4, 0, 0, 1, 2, 0, 4, 0, 0, 0, 2, 0, 4, 0, 0, 1, 4, 0, 4, 0, 0, 0, 4, 0, 4, 0, 0, 1, 4, 0, 4, 0, 0, 1, 3, 0, 5, 0, 0, 0, 3, 0, 5, 0, 0, 1, 4, 0
OFFSET
1,22
EXAMPLE
22 can be written in two ways as the sum of two congruent primes modulo 3: 22 = 5 + 17 (5 = 17 mod 3) and 22 = 11 + 11 (order of addition is ignored). Hence a(22) = 2.
MATHEMATICA
f[n_] := Module[{a, d, i}, a = {}; u = Floor[n/2]; For[i = 1, i <= u, i++, If[PrimeQ[i] && PrimeQ[n - i] && Mod[i, 3] != Mod[n - i, 3], a = Append[a, {n, i, n - i}]]]; a]; Table[Length[f[n]], {n, 1, 200}]
Table[Count[Select[IntegerPartitions[n, {2}], AllTrue[#, PrimeQ]&], _?(Mod[#[[1]], 3]== Mod[ #[[2]], 3]&)], {n, 110}] (* Harvey P. Dale, Jul 14 2024 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Joseph L. Pe, Dec 13 2002
STATUS
approved