[go: up one dir, main page]

login
A078329
Primes p such that mu(p+1)=-1, where mu denotes the moebius function.
3
2, 29, 41, 101, 109, 113, 137, 173, 181, 229, 257, 281, 317, 353, 373, 401, 409, 433, 601, 617, 641, 653, 677, 709, 761, 821, 829, 853, 937, 941, 977, 1009, 1021, 1033, 1069, 1117, 1129, 1181, 1193, 1297, 1361, 1373, 1433, 1489, 1597, 1613, 1669, 1697
OFFSET
1,1
COMMENTS
Contains primes followed by primes (i.e., the 2), primes followed by sphenic numbers (A007304), or followed by elements of A046387, A123321, A115343 etc. - R. J. Mathar, Aug 14 2019
Primes followed by numbers that are the product of an odd number of distinct primes (A030059). - Joerg Arndt, Aug 14 2019
LINKS
EXAMPLE
29 is in the sequence because 29 is prime and mu(30)=-1.
MATHEMATICA
Select[Prime[Range[300]], MoebiusMu[#+1]==-1&] (* Harvey P. Dale, Feb 28 2013 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Shyam Sunder Gupta, Nov 21 2002
STATUS
approved