[go: up one dir, main page]

login
A077565
Number of factorizations of n where each factor has a different prime signature.
5
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 3, 1, 3, 1, 1, 1, 4, 1, 1, 2, 3, 1, 4, 1, 3, 1, 1, 1, 3, 1, 1, 1, 4, 1, 4, 1, 3, 3, 1, 1, 6, 1, 3, 1, 3, 1, 4, 1, 4, 1, 1, 1, 5, 1, 1, 3, 4, 1, 4, 1, 3, 1, 4, 1, 7, 1, 1, 3, 3, 1, 4, 1, 6, 2, 1, 1, 5, 1, 1, 1, 4, 1, 5, 1, 3, 1, 1, 1, 9, 1, 3, 3, 3, 1, 4, 1, 4, 4
OFFSET
1,8
COMMENTS
In contrast to A001055 this sequence excludes from the count all such factorizations of n that include two such factors, f and g, for which it would hold that A046523(f) = A046523(g), or equally A101296(f) = A101296(g). - Antti Karttunen, Nov 24 2017
REFERENCES
Amarnath Murthy, Generalization of partition function. Introducing Smarandache Factor Partition. Smarandache Notions Journal, Vol. 11, 1-2-3,2000.
LINKS
David A. Corneth, Table of n, a(n) for n = 1..10000 (first 6143 terms from Antti Karttunen, computed with the given Scheme-program)
FORMULA
a(n) <= A001055(n). - Antti Karttunen, Nov 24 2017
a(p^e) = A000009(p^e). - David A. Corneth, Nov 24 2017
EXAMPLE
a(24) = 4, 24 = 12*2 = 8*3 = 6*4. The factorizations 2*3*4, 2*2*2*3 etc. are not counted.
From Antti Karttunen, Nov 24 2017: (Start)
For n = 30 the solutions are 30, 2*15, 3*10, 5*6, thus a(30) = 4.
For n = 36 the solutions are 36, 2*18, 3*12, thus a(36) = 3.
For n = 60 the solutions are 60, 2*30, 3*20, 4*15, 5*12, thus a(60) = 5.
For n = 72 the solutions are 72, 2*36, 3*24, 4*18, 6*12, 8*9, 3*4*6, thus a(72) = 7.
(End)
MATHEMATICA
Table[1 + Count[Subsets[Rest@ Divisors@ n, {2, Infinity}], _?(And[Times @@ # == n, UnsameQ @@ Map[Sort[FactorInteger[#][[All, -1]], Greater] &, #]] &)], {n, 105}] (* Michael De Vlieger, Nov 24 2017 *)
KEYWORD
nonn
AUTHOR
Amarnath Murthy, Nov 11 2002
EXTENSIONS
Corrected and extended by Ray Chandler, Aug 26 2003
Name improved by Antti Karttunen and David A. Corneth, Nov 24 2017
STATUS
approved