OFFSET
1,8
COMMENTS
REFERENCES
Amarnath Murthy, Generalization of partition function. Introducing Smarandache Factor Partition. Smarandache Notions Journal, Vol. 11, 1-2-3,2000.
LINKS
David A. Corneth, Table of n, a(n) for n = 1..10000 (first 6143 terms from Antti Karttunen, computed with the given Scheme-program)
Antti Karttunen, Scheme-program for computing this sequence
FORMULA
a(n) <= A001055(n). - Antti Karttunen, Nov 24 2017
a(p^e) = A000009(p^e). - David A. Corneth, Nov 24 2017
EXAMPLE
a(24) = 4, 24 = 12*2 = 8*3 = 6*4. The factorizations 2*3*4, 2*2*2*3 etc. are not counted.
From Antti Karttunen, Nov 24 2017: (Start)
For n = 30 the solutions are 30, 2*15, 3*10, 5*6, thus a(30) = 4.
For n = 36 the solutions are 36, 2*18, 3*12, thus a(36) = 3.
For n = 60 the solutions are 60, 2*30, 3*20, 4*15, 5*12, thus a(60) = 5.
For n = 72 the solutions are 72, 2*36, 3*24, 4*18, 6*12, 8*9, 3*4*6, thus a(72) = 7.
(End)
MATHEMATICA
Table[1 + Count[Subsets[Rest@ Divisors@ n, {2, Infinity}], _?(And[Times @@ # == n, UnsameQ @@ Map[Sort[FactorInteger[#][[All, -1]], Greater] &, #]] &)], {n, 105}] (* Michael De Vlieger, Nov 24 2017 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Amarnath Murthy, Nov 11 2002
EXTENSIONS
Corrected and extended by Ray Chandler, Aug 26 2003
Name improved by Antti Karttunen and David A. Corneth, Nov 24 2017
STATUS
approved