OFFSET
0,2
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Vladimir Pletser, Recurrent Relations for Multiple of Triangular Numbers being Triangular Numbers, arXiv:2101.00998 [math.NT], 2021.
Vladimir Pletser, Triangular Numbers Multiple of Triangular Numbers and Solutions of Pell Equations, arXiv:2102.13494 [math.NT], 2021.
Vladimir Pletser, Using Pell equation solutions to find all triangular numbers multiple of other triangular numbers, 2022.
Index entries for linear recurrences with constant coefficients, signature (1,98,-98,-1,1).
FORMULA
a(n) = 6*A077289(n).
G.f.: -6*x*(x^2+5*x+1) / ((x-1)*(x^2-10*x+1)*(x^2+10*x+1)). - Colin Barker, Jul 02 2013
a(n) = 98*a(n-2) - a(n-1) + 42. - Vladimir Pletser, Feb 20 2021
EXAMPLE
The k-th triangular number is T(k) = k*(k+1)/2, so T(35)/T(14) = (35*36/2)/(14*15/2) = 630/105 = 6, so T(35)=630 is a term. - Jon E. Schoenfield, Feb 20 2021
MAPLE
f := gfun:-rectoproc({a(-2) = 6, a(-1) = 0, a(0) = 0, a(1) = 6, a(n) = 98*a(n-2)-a(n-4)+42}, a(n), remember); map(f, [`$`(0 .. 1000)])[]; # Vladimir Pletser, Feb 20 2021
MATHEMATICA
CoefficientList[Series[-6 x (x^2 + 5 x + 1)/((x - 1) (x^2 - 10 x + 1) (x^2 + 10 x + 1)), {x, 0, 20}], x] (* Michael De Vlieger, Apr 21 2021 *)
PROG
(PARI)
T(n)=n*(n+1)\2;
istriang(n)=issquare(8*n+1);
for(n=0, 10^10, t=T(n); if ( t%6==0 && istriang(t\6), print1(t, ", ") ) );
\\ Joerg Arndt, Jul 03 2013
(PARI) concat(0, Vec(-6*x*(x^2+5*x+1) / ((x-1)*(x^2-10*x+1)*(x^2+10*x+1)) + O(x^100))) \\ Colin Barker, May 15 2015
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Bruce Corrigan (scentman(AT)myfamily.com), Nov 03 2002
EXTENSIONS
More terms from Joerg Arndt, Jul 03 2013
STATUS
approved