[go: up one dir, main page]

login
A077206
a(1) = 1 and then smallest n-digit triangular number starting with the least significant digit of the previous term and not a multiple of 10.
1
1, 15, 528, 8001, 10011, 100128, 8006001, 10001628, 800060001, 1000006281, 10000020331, 100000404505, 5000002655781, 10000002437316, 600000012076636, 6000000109431328, 80000000600000001, 100000000447232406
OFFSET
1,2
EXAMPLE
a(2) = 15 hence a(3) = 528 is the smallest 3-digit triangular number starting with 5, the least significant digit of 15.
MATHEMATICA
a = {1}, Do[k = Ceiling[(Sqrt[8 # + 1] - 1)/2] &[Last@ IntegerDigits[ a[[i]]] * 10^i]; While[Mod[Set[m, k (k + 1)/2], 10] == 0, k++]; AppendTo[a, m], {i, 17}]; a (* Michael De Vlieger, Jun 11 2017 *)
PROG
(PARI)
{rT(m) = ceil((sqrt(8*m+1)-1)/2)}
{T(n) = (n*(n+1))/2}
my(m=1); for(n=1, 30, my(k=rT((m%10)*10^(n-1))); while(T(k)%10==0, k++); m=T(k); print1(m, ", ")) \\ Max Alekseyev, Feb 15 2005
CROSSREFS
Sequence in context: A157166 A074040 A002403 * A171197 A351183 A061174
KEYWORD
base,nonn
AUTHOR
Amarnath Murthy, Nov 02 2002
EXTENSIONS
Corrected and extended by Max Alekseyev, Feb 15 2005
STATUS
approved