[go: up one dir, main page]

login
A075581
Let P(n,X) = Product_{i=1..2n+1} (X - 1/cos(Pi*k/(2n+1))); then P(n,X) is a polynomial with integer coefficients. Sequences gives maximum values of absolute values of coefficients of P(n,X).
9
1, 4, 16, 80, 448, 2304, 11520, 67584, 372736, 1966080, 11141120, 63504384, 348651520, 1917583360, 11142168576, 62704844800, 343513497600, 1992378286080, 11402534191104, 63709397385216, 361019918516224
OFFSET
0,2
EXAMPLE
P(3,X) = X^7 + X^6 - 24*X^5 - 24*X^4 + 80*X^3 + 80*X^2 - 64*X - 64, hence a(3) = 80.
CROSSREFS
Sequence in context: A106568 A183146 A160564 * A171454 A316944 A020080
KEYWORD
easy,nonn
AUTHOR
Benoit Cloitre, Oct 11 2002
STATUS
approved