[go: up one dir, main page]

login
Numerators in the Maclaurin series for arctan(1+x).
6

%I #12 May 09 2014 02:48:20

%S 0,1,-1,1,0,-1,1,-1,0,1,-1,1,0,-1,1,-1,0,1,-1,1,0,-1,1,-1,0,1,-1,1,0,

%T -1,1,-1,0,1,-1,1,0,-1,1,-1,0,1,-1,1,0,-1,1,-1,0,1,-1,1,0,-1,1,-1,0,1,

%U -1,1,0,-1,1,-1,0,1,-1,1,0,-1,1,-1,0,1,-1,1,0,-1,1,-1,0,1,-1,1,0,-1,1,-1,0,1,-1,1,0,-1,1,-1,0,1,-1,1,0,-1,1,-1,0

%N Numerators in the Maclaurin series for arctan(1+x).

%F Euler transform of length 8 sequence [ -1, 1, 1, -1, 0, -1, 0, 1]. - _Michael Somos_, Jul 16 2006

%F G.f.: x(1-x+x^2)/(1+x^4) = x(1-x)(1-x^4)(1-x^6)/((1-x^2)(1-x^3)(1-x^8)). a(-n) = a(n+4) = -a(n). - _Michael Somos_, Jul 16 2006

%t a[n_] := I ((-1 - I)^n - (-1 + I)^n)/2^Floor[1 + n/2]; Table[a[n], {n, 0, 100}]

%o (PARI) a(n)=[0,1,-1,1,0,-1,1,-1][n%8+1] /* _Michael Somos_, Jul 16 2006 */

%Y Cf. A075554.

%K sign,easy

%O 0,1

%A _Eric W. Weisstein_, Sep 23 2002