[go: up one dir, main page]

login
A075262
z-value of the solution (x,y,z) to 3/(2n+1) = 1/x + 1/y + 1/z satisfying 0 < x < y < z, odd x, y, z and having the largest z-value. The x and y components are in A075260 and A075261.
3
15, 231, 45, 165, 2145, 105, 153, 8911, 693, 207, 25425, 1683, 957, 58311, 1001, 10465, 115921, 6435, 19065, 208335, 10965, 2961, 347361, 2907, 5035, 546535, 26733, 18585, 821121, 39123, 112125, 1188111, 7475, 157975, 1666225, 76275
OFFSET
2,1
COMMENTS
See A075259 for more details.
MATHEMATICA
m=3; For[xLst={}; yLst={}; zLst={}; n=5, n<=200, n=n+2, cnt=0; xr=n/m; If[IntegerQ[xr], x=xr+1, x=Ceiling[xr]]; While[yr=1/(m/n-1/x); If[IntegerQ[yr], y=yr+1, y=Ceiling[yr]]; cnt==0&&y>x, While[zr=1/(m/n-1/x-1/y); cnt==0&&zr>y, If[IntegerQ[zr], z=zr; If[OddQ[x y z], cnt++; AppendTo[xLst, x]; AppendTo[yLst, y]; AppendTo[zLst, z]]]; y++ ]; x++ ]; If[cnt==0, AppendTo[xLst, 0]; AppendTo[yLst, 0]; AppendTo[zLst, 0]]]; zLst
CROSSREFS
KEYWORD
nice,nonn
AUTHOR
T. D. Noe, Sep 10 2002
STATUS
approved