[go: up one dir, main page]

login
A074663
a(n) = sum of n-th row of the triangle formed by replacing each m in Pascal's triangle with the m-th prime.
1
2, 4, 7, 14, 31, 84, 195, 482, 1131, 2620, 5957, 13502, 29911, 65820, 143551, 311074, 669543, 1435388, 3061571, 6503526, 13771989, 29061728, 61159219, 128372210, 268845359, 561835492, 1171862289, 2440014306, 5072185867, 10528184756
OFFSET
1,1
EXAMPLE
The fourth row of Pascal's triangle is 1 3 3 1. Replacing each n by prime(n) gives 2 5 5 2, the terms of which sum to 14. Therefore a(4) = 14.
MATHEMATICA
f[n_] := Sum[Prime[Binomial[n-1, i]], {i, 0, n-1}]; Table[f[i], {i, 1, 30}]
CROSSREFS
Cf. A074589.
Sequence in context: A013326 A202973 A372265 * A325303 A356781 A113122
KEYWORD
easy,nonn
AUTHOR
Joseph L. Pe, Sep 26 2002
STATUS
approved